Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer
Reexamination Certificate
1998-09-08
2003-10-21
Hayes, Gail (Department: 2131)
Electrical computers and digital processing systems: support
Multiple computer communication using cryptography
Protection at a particular protocol layer
C340S005740, C340S005820
Reexamination Certificate
active
06636973
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to improved security in a computer network. More particularly, the invention relates to improved security during the log on process. More particularly still, the invention relates to dynamically altering a user's password during the log on process.
2. Background of the Invention
Computer networks usually comprise one or more “client” computers coupled to one or more “file servers.” A user accesses the information and capabilities of the network through a client computer. The file server (or simply “server”) generally is a central control point that provides the user access to the network's resources. Access to the network typically requires a user to “log on” to the network. The log on process normally involves the user entering a username and password through a keyboard attached to a client computer. The username and password are then transmitted to the file server where they are compared to a user database that contains a username and password for all users that have been registered by a system administrator to access the network. If match is found, the server logs the user on to the network and the user can access whatever network resources the system administrator has designated for that user.
Although the username and password are unique for each registered user, anyone can access the computer network if he or she knows a registered username and password. Conventional computer networks do not have the ability to determine whether the user that has entered the username and password actually is the person authorized to use that username and password. To prevent unauthorized access to a computer network's resources, it is important in such a conventional computer network for each user to keep his or her username and password secret. The security of a computer network is compromised, however, if a user fails to adequately keep his or her password and usemarne secret. Thus, improved techniques to minimize unauthorized computer network access which minimize or avoid reliance on the reliability of a human user to maintain username/password secrecy are desirable.
One approach to improving security in a computer network environment involves the use of a “biometric” during the log on process. As used throughout this disclosure, the term “biometric” generally refers to any bodily parameter unique to each user. Examples of biometrics include fingerprints, hand geometry, facial geometry, retinal scan, voice, body odor or any other characteristic that distinguishes one person from another. Biometrics can be detected, measured, and/or scanned by a suitable device. For example, Identicator Technologies, Corp. has introduced a fingerprint sensor device that connects to a computer system. A user places his or her finger on the surface of the device and an image is captured of the user's fingerprint. That fingerprint image is provided to the computer system. The computer processes the fingerprint image and generates a “template” of the image which is a value representative of the raw image.
When a user is first enrolled as a registered user, an image is captured of the user's fingerprint, a template is generated therefrom, and a password and username are assigned to the user. The password and template are stored in a database and indexed by username. The database thus contains passwords and fingerprint templates for all users wishing to log on using the fingerprint identification mechanism. During the log on process, the computer network compares the template generated to templates previously stored in the database. If a match is found, the computer selects the password that is stored with the matching fingerprint template and uses the username and password to log the user on the network.
In this scheme in addition to permitting the user to log on to the computer network by typing a username and password, the fingerprint sensor permits a user to log on by entering a username and fingerprint. Thus, the user of such a computer system can log on to the network either using the biometric feature or entering a username and password in accordance with conventional log on procedure.
Even in computer network systems that incorporate biometric log on devices, security is still an issue. Passwords associated with each user still are required for the file server to log the user into the network. Most computer systems that incorporate fingerprint identification also permit logging on using the conventional username/password data entry method. Thus, an unauthorized person who is able to obtain a valid password can still log on to the computer network without a biometric. Passwords typically remain static and are only changed, if at all, after predefined periods of time to increase network security. When it is time to change a password, the user is prompted to type in a new password to replace the old password. The potential for a user not keeping the password secret still exists even in systems which encourage a periodic password change.
Thus, it is desirable to provide a computer network system which provides increased security relative to conventional computer systems. Improved security is also desirable in a stand-alone computer to prevent unauthorized access to the resources available in that computer. Despite the advantages such a computer system would offer, to date no such system is known to exist.
BRIEF SUMMARY OF THE INVENTION
The deficiencies of the prior art described above are solved in large part by a computer network including at least one client computer coupled to a server computer that dynamically changes a user's password preferably each time the user successfully logs on to the computer network. The server computer includes a users database that contains a password, a username (optional) and a biometrics template value associated with each user registered to access the computer network. A biometrics sensing device, such as a fingerprint sensor, connects to each client computer. The user attempts to log on to the server by entering a username (which is optional) and activating the biometrics sensing device to capture a sample of a bodily characteristic of the user. If the biometrics sensing device is a fingerprint sensor, for example, the user places a finger in contact with the sensor. Appropriate software and/or hardware in the client and server computers capture an image of the user's fingerprint from the biometrics sensing device and create a template value from the captured image. The template value thus is representative of a bodily characteristic of the user who activated the biometrics sensing device in an attempt to log on to the server computer.
The client then transmits the template value to the server that includes a fingerprint matching library and a users database. The matching library compares the template value received from the client computer with template values previously stored in the users database. If a match if found, indicating that the user who is attempting to log on is a registered user, the log on process completes. A “match” does not necessarily require an identical value, but also includes values within a predefined range as determined using a suitable scoring mechanism. At some point during or after the log on process, a biometrics account manager which has access to the users database changes the current password associated with the use to a new password. Thus, each time a user logs on to the computer network the password is changed, thereby increasing security in the computer network. Because the user is not required to remember and type the password, the passwords may be longer and more complex, thereby further enhancing security. In general, the passwords can be as long as is allowed by the operating system.
The process of changing the password preferably includes using the current passwor
Crisan Adrian
Novoa Manuel
Hayes Gail
Hewlett--Packard Development Company, L.P.
Revak Christopher
LandOfFree
Secure and dynamic biometrics-based token generation for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Secure and dynamic biometrics-based token generation for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Secure and dynamic biometrics-based token generation for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114742