Static structures (e.g. – buildings) – Disparate sheet lamina between exposed surfaces of wall,... – Tie crossing dividing lamina
Reexamination Certificate
2001-12-20
2004-04-20
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Disparate sheet lamina between exposed surfaces of wall,...
Tie crossing dividing lamina
C052S512000, C411S462000
Reexamination Certificate
active
06722095
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to seam plates for use in connection with the retention of roof decking membranes upon roof decking substructures at seam locations defined between separate, adjacent, and overlapping membrane members, and more particularly to a new and improved seam plate, and a roof decking system employing the same, wherein improved retention of the membrane member upon the roof decking substructure is able to be achieved without generating or initiating tearing or other similar deterioration of the roof decking membrane when the membrane is subjected to wind or other environmental forces.
BACKGROUND OF THE INVENTION
Stress plates or seam plates are used in connection with the retention of roof decking membranes upon roof decking substructures at seam locations defined between separate but adjacent or overlapping membrane members, and are of course well-known in the art. Examples of such seam plates or stress plates are disclosed within U.S. Pat. No. 4,945,699 which issued to Colin R. Murphy on Aug. 7, 1990, as well as U.S. Pat. No. 4,787,188 which also issued to Colin R. Murphy on Nov. 29, 1988. As disclosed within FIGS. 1, 3A-3C, and 4 of the aforenoted U.S. Pat. No. 4,945,699 to Murphy, the roof decking substructure is disclosed at 103 and may conventionally be provided with overlying insulation 102. The insulation 102 is, in turn, adapted to have membranes disposed thereon in an overlying manner, and at a location or site at which separate and adjacent membranes are to be in effect seamed together in an overlapping manner, a first underlying membrane is disclosed at 101 and is adapted to be secured to the underlying deck substructure 103 by means of a screw fastener 107 passing through a seam plate or stress plate 10, while a second membrane member 104 is adapted to be secured in an overlapping manner upon the first underlying membrane member 101 by means of a welded seam 111. The seam plate or stress plate 10 is seen to have a circular configuration, and is provided with an upper surface 11 and a lower surface 12. A central aperture 15 is provided for passage therethrough of the screw fastener 107, and a circular reinforcing rib 14 annularly surrounds the central aperture 15. Accordingly, when such a stress plate or seam plate 10 is to be used to secure membrane members to the underlying decking substructure 103, the stress plate or seam plate 10 is disposed atop the first underlying membrane member 101, and the stress plate or seam plate 10 is then fixedly secured to the underlying decking substructure by means of screw fastener 107 being threadedly engaged with the underlying decking substructure. In accordance with the particularly unique stress plate or seam plate 10 as disclosed within the noted Murphy patents, the bottom surface 12 of the stress plate or seam plate 10 is provided with a plurality of circumferentially spaced prongs or tangs 21 each of which terminates in a gripping point 22. The prongs or tangs 21 each have a substantially triangular configuration and are in effect partially punched-out or otherwise cut from the bottom surface portion 12 of the plate 10, and are subsequently bent such that the prongs or tangs 21 attain their desired disposition with respect to the bottom surface portion 12 of the plate 10. Such prongs or tangs 21 will therefore grip the lower or underlying membrane sheet 101 and prevent the same from becoming loose or free with respect to the stress plate 10 or the underlying roof substructure 103 despite wind or other environmental forces being impressed upon the membrane sheet 101.
While the aforenoted stress or seam plates of Murphy have been satisfactory and commercially successful, it has been experienced that, despite well-meaning statements of intent to the contrary as set forth in the Murphy patents, the presence of the pointed prongs or tangs 21 characteristic of the stress plate or seam plate 10 of the Murphy patents do in fact tend to puncture, tear, weaken, and otherwise cause deterioration of the membrane sheets 101 under wind and other environmental conditions. Obviously, such a state is not satisfactory in view of the fact that eventually, the membrane sheets tear away from the overlying seam plate 10 as well as away from the underlying insulation panel and roof decking, with the consequent result being the compromise of the structural integrity of the entire roof decking system.
A need therefore existed in the art for a new and improved stress plate or seam plate wherein the stress plate or seam plate could satisfactorily engage the insulation-protection membrane sheets so as to secure the membrane sheets to the underlying decking substructure, and yet, the means formed upon the stress plate or seam plate for engaging the membrane sheets would not tend to initiate tearing of the membrane sheets and thereby cause separation of the membrane sheets with respect to the stress plate or seam plate as well as the underlying decking substructure under, for example, windy or other forceful environmental conditions. Accordingly, the invention embodied within aforenoted U.S. patent application Ser. No. 09/933,230 was developed wherein, contrary to the PRIOR ART stress plate having the sharp-pointed prongs or tangs provided thereon, a plurality of circumferentially spaced, downwardly extending projections having substantially V-shaped cross-sectional configurations were provided upon the underside of the seam or stress plate wherein the projections comprised substantially rounded or radiused apices so as not to puncture or rupture the membrane sheets, and yet such projections could satisfactorily engage the membrane sheets so as to fixedly retain the same upon the underlying roofing deck substructural assembly.
While the seam plate or stress plate developed in accordance with the principles and teachings of the invention as set forth within the aforenoted U.S. patent application Ser. No. 09/933,230 has performed quite satisfactorily and has been commercially successful, it has been determined that such stress plate or seam plate cannot necessarily optimally accommodate all uplifting wind load forces, or ensure the maintenance of the membranes in their secured state upon the underlying insulation panel, as functions of, or interdependent upon, the particular membranes being employed. For example, the weather protection membranes have conventionally comprised membranes having a width dimension of approximately six feet (6.00′), however, within recent times, and in accordance with new industry standards or norms, membranes having width dimensions on the order of, for example, nine feet (9.00′), seem to be utilized more often. Consequently, such newer membranes comprise or cover square footage areas which are substantially fifty percent (50%) greater than those of the conventional or previously utilized membranes, and accordingly, such larger membranes represent or generate enhanced wind loads or forces acting upon the membranes, the seam or membrane plates, and the bolt fasteners securing the membranes and the seam plates to the underlying insulation panels and roof decking. Therefore, membrane and bolt fastener assembly failures are likely to increase, unless the aforenoted problems are adequately addressed. A proposed solution to the problem has been to simply increase the number of attachment sites at which the seam plates and bolt fasteners can be secured to the underlying insulation panels and roof decking, however, this is not a viable solution for several reasons.
For example, the number of attachment sites, or more particularly, the array or arrangement of the attachment sites, is predetermined, or in effect dictated, by means of the underlying roof decking in view of the fact that the bolt fasteners must be threadedly engaged within the crest portions of the roof decking. Conventionally, the predetermined distance defined between adjacent corrugations of the roof decking, as measured, for example, from crest to crest, is six inches (6.00″), and in accordanc
Breh Donald J.
Croll Mark W.
Friedman Carl D.
Illinois Tool Works Inc.
Katcheves Basil
LandOfFree
Seam plate for retaining roof decking membrane does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Seam plate for retaining roof decking membrane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seam plate for retaining roof decking membrane will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3209468