Scalable on-chip system bus

Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S105000

Reexamination Certificate

active

06493776

ABSTRACT:

This invention relates in general to the field of computer architecture, and more specifically to an on-chip system bus to allow communication between multiple on-chip devices.
BACKGROUND OF THE INVENTION
A system bus in a computing system provides a communication channel between computing devices, such as microprocessors, and other devices such as memory, keyboard, monitor, video controllers, sound generation devices, etc. The system bus typically includes data paths for memory addresses, data, and control information. In some instances, a processor multiplexes (i.e., shares) address and data information over the same signal lines, albeit at different times. That is, a processor sends address information out over the address/data pins during a first time period and later uses the same address/data pins to send or receive data. Alternatively, many processors utilize separate signal lines for address and data information.
To better understand what a system bus is as well as the importance of bus interface standards, a general overview of the operation of a typical system bus is provided. Following that, a brief summary of modern system buses is given. Finally, an introduction to some of the needs that are not yet addressed by modern system buses is presented.
In operation, a microprocessor communicates with memory when it needs to fetch an instruction. During execution of that instruction, the microprocessor might be required to read data from memory, or from another external device such as an input/output (I/O) port. And, upon completion of the instruction, the microprocessor might be required to write data to memory, or to another external device. A typical scenario for accessing the memory to obtain the instruction and the data would be similar to the following:
1. The microprocessor presents a memory address for an instruction on the address lines of the system bus, and provides control information on the control lines of the system bus to indicate that the operation is a read.
2. In response to the address and control information being placed on the system bus, the memory places the instruction on the data lines of the system bus, which are then read by the microprocessor. The data is typically placed on the data lines N cycles after the address information has been placed on the address lines, where N is a positive integer and varies depending on the speed of the memory.
3. During execution of the instruction, if data is required, a memory address for the data is placed on the address lines of the system bus, and control information is placed on the control lines of the system bus to indicate a read.
4. Again, the memory places data corresponding to the memory address on the data lines of the system bus.
5. If the instruction needs to write to memory, the memory address for the write is placed on the address lines of the system bus, and control information is placed on the control lines to indicate a write.
6. N cycles after the memory address is presented, the data to be written is placed by the microprocessor on the data lines of the system bus. The memory uses the memory address presented in step 5, and places the data on the data lines into memory at that address.
One skilled in the art will appreciate from the above that the system bus provides the necessary physical interface between a computing device, and other devices (such as memory) that are external to it. The physical interface for a given system bus is typically defined in terms of the number of signal lines allocated to address, data, and control information, as well as the electrical characteristics of each of the signal lines. That is, typical system buses may provide anywhere from 20 address lines (for accessing up to 1 million different memory addresses), up to 32 address lines (for accessing up to 4 billion different memory addresses), or more. In addition, the size of the data portion of the system bus may vary from 8-bits in width, up to 128 bits in width, or more. One skilled in the art will also appreciate that the wider the data width, the more information can be transferred at the same time.
From an electrical standpoint, system buses typically operate in the range of 0 volts to 5 volts, although other ranges are possible. Furthermore, particular bus interfaces define for each signal line on the bus, what logical state is meant for a particular voltage level. For example, the bus interface defines whether a logical 1 is provided by a voltage level of 5 volts, 0 volts (active low), or something else.
A system bus interface also provides the protocol necessary for communicating between devices. That is, the protocol defines when address, data, and control signals must appear on the system bus, in relation to each other. For example, in the illustration presented above, address information appears in parallel with control information. At some time later, data information is presented by the microprocessor, or is provided by memory.
A system bus protocol may also define how long signals must appear on the system bus. For example, a system bus protocol might require that address information appear on the bus for at least 2 clock cycles. And, the protocol might require that data must appear on the bus later than 2 cycles after the address information is removed. One skilled in the art will appreciate that such protocol definitions are specific to particular types of system buses.
With the above general background on system buses, a brief overview will now be provided for modern system bus interfaces.
The most common system bus interface in the world today is the Industry Standard Architecture (ISA) bus. In 1984, with the introduction of the Intel 80286 microprocessor, a new bus was required that could utilize the full 16-bit data bus of that processor. IBM decided to develop a new bus interface that could accept the data width of the 80286, and allow them to add more address and control signals to the previously designed PC bus. However, to allow the bus to remain backward compatible with devices designed for the PC bus, compromises were made. The resultant ISA bus was therefore something of a hybrid, offering advantages of increased speed (8 megahertz), increased data lines (16-bit), and increased address lines (24-bit), as well as additional interrupt and control lines, while at the same time separating the additional lines on a supplementary connector. This allowed legacy expansion cards with 8-bit data interface to be used, while adding additional data and address pins on the supplementary connector. The result was an 8-MHz bus clock, with a 16-bit data path, and 24 address lines to address 16 megabytes of memory. However, the number of I/O ports was still limited to 1,024 due to compatibility concerns with PC bus expansion boards.
As processor speeds increased, Intel separated the processor from the ISA bus to allow faster communication between the processor and memory, while still providing communication with slower ISA devices. The processor bus that is presently offered is referred to as either the host bus, or the Pentium bus. A typical implementation of the Pentium bus provides address, data and control signals between a processor and a memory controller, and operates at approximately 100 MHz. Also attached to this host bus is a chip, or chip-set that provides an interface between the host bus, and slower buses such as PCI and ISA. For a more thorough discussion of various PC bus architectures, the reader is directed to http://www.pcguide.com/ref/mbsys/buses/index.htm.
In each of the above-mentioned buses, the protocol associted with performing a read or write is essentially the same. That is, a processor first places address and control information on the host bus. At some later time, data is presented on the data lines of the bus, either by the processor (if the transaction is a write), or by memory (if the transaction is a read). In environments where there is only 1 device capable of initiating bus activity (a uni-master environment), such a protocol is generally sufficient. However, in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Scalable on-chip system bus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Scalable on-chip system bus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scalable on-chip system bus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2952917

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.