Safety guide for surgical placement of sharp instruments

Surgery – Means or method for facilitating removal of non therapeutic... – Surgical drain

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S160000, C606S054000

Reexamination Certificate

active

06613039

ABSTRACT:

BACKGROUND
The present invention relates to safety devices for surgical instruments. More specifically, the present invention relates to a device that advances the tip of a sharp surgical instrument, such as a trocar, through a patient's skin.
The implementation of safety measures in the workplace of healthcare personnel, such as physicians, nurses, and phlebotomists, has lagged behind such implementation in other industries. Devices are now available that diminish the exposure of healthcare personnel to puncture wounds and contamination by potentially dangerous or chemicals or body fluids, which may lead to infection by such pathogens as human immunodeficiency virus (HIV), hepatitis B, and hepatitis C. These devices include convenient safety sheaths around hypodermic needles, and intravenous medication bottles that do not require the use of hypodermic needles.
The nature of surgical procedures, however, unavoidably exposes medical personnel, including surgeons, assistants, and nurses, to many sharp and potentially injurious instruments. These instruments include scalpels, needles, retractors, and many other sharp and pointed tools. One of the most dangerous of these tools is the trocar, utilized, for example, to make stab wounds in the skin for placement of surgical drains. Surgical drains are used in a wide variety of surgical procedures. One end of such a drain is placed in a body cavity, and the other end extends outside of the patient's body, facilitating the removal of an unwanted collection of fluid, such as serum, blood, bile, and/or pus. The drain, generally made of plastic or rubber tubing, exits the body through a stab wound in the skin, draining the contents of the body cavity into a reservoir attached to the other end of the drain tube.
Most surgical drains are inserted through the skin with trocars, which are metallic spears that are attached to the plastic or rubber surgical drains. The trocars are extremely sharp and often unwieldy instruments, utilized to impale soft tissues around a body cavity. A trocar enters the patient's skin from inside the body cavity and exits out of the body cavity through the overlying skin. Great care must be taken in avoiding injury to vital structures while the trocar is being inserted. This procedure is often made difficult when a patient's tissues are thick or when slippery fluids and fat make handling of the smooth, metallic trocars difficult. The greatest risk to healthcare personnel occurs when the tip of the trocar exits the patient's skin. The exit site on the skin surface for the trocar tip must be predicted, and then the tip of the trocar must then be retrieved with a gloved hand after the trocar has protruded through the skin. The trocar is then pulled away from the patient's skin for approximately one or two feet, pulling the plastic or rubber tubing of the surgical drain through the stab wound along with the trocar. The drain is then cut, and the sharp trocar is then handed off to a scrub nurse for safe disposal. At every point in this drain-placement procedure, the surgical team is at risk for puncture wounds, and consequent infection, from the trocar.
SUMMARY
Thus, there is a need for a safety device that guides a trocar (or other sharp instrument) as it is being inserted through the skin, from within a patient's body cavity to the exterior surface of the skin, such that the trocar will be safely covered with a protective covering upon exit of the trocar from the skin.
One aspect of the invention includes a safety guide for placement of a trocar through the skin of a patient. The safety guide includes a “holder,” adapted to releasably hold the trocar, and a “receiver,” adapted to receive the sharp end of the trocar. The holder and the receiver are aligned such that the sharp end of the trocar is insertable through the patient's skin and then into the receiver while the trocar is releasably held by the holder.
In one embodiment, the holder is adapted to allow the trocar to slide longitudinally through it, while the trocar is releasably held by the holder. In some embodiments, the holder and the receiver are substantially immovable with respect to each other.
In a preferred arrangement, the receiver comprises a substantially cylindrical tube, forming a “sheath.” In further arrangements, the receiver may be and/or act as a pad or “cushion,” into which the sharp end of the trocar is placed. In this embodiment, the receiver may be made of one or more of the following materials: soft plastic, rubber, urethane, polyurethane, and polystyrene. Other materials may be used as appropriate, and will be apparent to those of skill in the art.
In another aspect, the safety guide includes a first tube, as well as a second tube that is slideably inserted into or around the first tube. A receiver, adapted to receive a sharp end of the trocar, is attached to the first tube. A holder, adapted to releasably hold the trocar, is attached to the second tube. The holder and the receiver are aligned such that the sharp end of the trocar is insertable through the patient's skin and then into the receiver while the trocar is releasably held by the holder.
In a preferred embodiment, a surgical drain is attached to the trocar or other sharp surgical instrument. In further embodiments, the holder and/or receiver is advantageously attached to its respective tube by a strut. In some embodiments, the first and second tubes are noncylindrical, i.e., asymmetrical in cross-sectional shape, such that the first tube cannot substantially rotate about the longitudinal axis of the second tube when the second tube is slideably inserted into or around said first tube. This mechanism provides nonrotatable alignment of the holder and the receiver, which facilitates placement of the sharp end of the trocar into the receiver.
In certain preferred arrangements, the receiver, such as a sheath, is substantially housed within the strut. In other arrangements, the receiver is adapted to allow the surgical instrument to lock releasably with the sheath. This can occur if, for example, a portion of the receiver is configured to fit into a recess in the outer surface of the trocar.
The holder may have a longitudinal slot along its length. This slot allows removal of the trocar or surgical drain from the holder, directly through the slot. A slot piece may also be provided, which is attached to and rotatable within the instrument holder. This slot piece is, in some embodiments, substantially cylindrical and also has a longitudinal slot, which is alignable with the longitudinal slot in the holder, in order to facilitate removal of the trocar or surgical drain.
Another aspect of the invention comprises a surgical trocar that is an elongate rod having a sharp end and a recess in the outer surface of the rod. This recess is configured to fit into the holder of the safety device. The recess may extend partially or totally around the circumference of the outer surface of the rod.
Another aspect of the invention includes a method of protecting surgical personnel from puncture wounds during placement of a surgical drain. This includes the following: (a) providing a safety guide having first and second ends; (b) placing the first end of the safety guide outside a patient's skin, the first end having a receiver; (c) placing the second end of the safety guide through a surgical incision into a body cavity, the second end releasably holding a trocar; (d) moving the receiver and the trocar closer to each other, thereby puncturing the skin with the trocar; and (e) further moving the receiver and the trocar closer to each other, thereby inserting the trocar into the receiver.
In one embodiment, the step of moving the receiver and the trocar closer to each other is accomplished by moving the first end and the second end of the safety guide closer to each other.
In an alternative embodiment, the first end and the second end of the safety guide may remain fixed relative to each other, such as in a “C-arm” configuration. Indeed, in this embodim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Safety guide for surgical placement of sharp instruments does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Safety guide for surgical placement of sharp instruments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safety guide for surgical placement of sharp instruments will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3093247

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.