Robotic surgical tool with ultrasound cauterizing and...

Surgery – Instruments – Heat application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S001000

Reexamination Certificate

active

06783524

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to surgical apparatus and methods. More specifically, the invention relates to a surgical instrument and method for use with a robotic surgical system, the instrument including an ultrasonic probe.
Minimally invasive surgical techniques generally reduce the amount of extraneous tissue damage during surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. One effect of minimally invasive surgery, for example, is reduced post-operative hospital recovery times. Because the average hospital stay for a standard surgery is typically significantly longer than the average stay for an analogous minimally invasive surgery, increased use of minimally invasive techniques could save millions of dollars in hospital costs each year. Patient recovery times, patient discomfort, surgical side effects, and time away from work can also be reduced by increasing the use of minimally invasive surgery.
In theory, a significant number of surgical procedures could potentially be performed by minimally invasive techniques to achieve the advantages just described. Only a small percentage of procedures currently use minimally invasive techniques, however, because certain instruments, systems and methods are not currently available in a form for providing minimally invasive surgery.
Traditional forms of minimally invasive surgery typically include endoscopy, which is visual examination of a hollow space with a viewing instrument called an endoscope. One of the more common forms of endoscopy is laparoscopy, which is visual examination and/or treatment of the abdominal cavity. In traditional laparoscopic surgery a patient's abdominal cavity is insufflated with gas and cannula sleeves are passed through small incisions in the musculature of the patient's abdomen to provide entry ports through which laparoscopic surgical instruments can be passed in a sealed fashion. Such incisions are typically about ½ inch (about 12 mm) in length.
The laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field and working tools defining end effectors. Typical surgical end effectors include clamps, graspers, scissors, staplers, and needle holders, for example. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by a long extension tube, typically of about 12 inches (about 300 mm) in length, for example, so as to permit the surgeon to introduce the end effector to the surgical site and to control movement of the end effector relative to the surgical site from outside a patient's body.
To perform a surgical procedure, a surgeon typically passes the working tools or instruments through the cannula sleeves to the internal surgical site and manipulates the instruments from outside the abdomen by sliding them in and out through the cannula sleeves, rotating them in the cannula sleeves, levering (i.e., pivoting) the instruments against the abdominal wall and actuating the end effectors on distal ends of the instruments from outside the abdominal cavity. The instruments normally pivot around centers defined by the incisions which extend through the muscles of the abdominal wall. The surgeon typically monitors the procedure by means of a television monitor which displays an image of the surgical site captured by the laparoscopic camera. Typically, the laparoscopic camera is also introduced through the abdominal wall so as to capture the image of the surgical site. Similar endoscopic techniques are employed in, for example, arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
Although traditional minimally invasive surgical instruments and techniques like those just described have proven highly effective, newer systems may provide even further advantages. For example, traditional minimally invasive surgical instruments often deny the surgeon the flexibility of tool placement found in open surgery. Difficulty is experienced in approaching the surgical site with the instruments through the small incisions. Additionally, the added length of typical endoscopic instruments often reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector. Furthermore, coordination of the movement of the end effector of the instrument as viewed in the image on the television monitor with actual end effector movement is particularly difficult, since the movement as perceived in the image normally does not correspond intuitively with the actual end effector movement. Accordingly, lack of intuitive response to surgical instrument movement input is often experienced. Such a lack of intuitiveness, dexterity and sensitivity of endoscopic tools has been found to be an impediment in the increased the use of minimally invasive surgery.
Minimally invasive robotic (or “telesurgical”) surgical systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Telesurgery is a general term for surgical operations using systems where the surgeon uses some form of remote control, e.g., a servomechanism, or the like, to manipulate surgical instrument movements, rather than directly holding and moving the tools by hand. In such a telesurgery system, the surgeon is typically provided with an image of the surgical site on a visual display at a location remote from the patient. The surgeon can typically perform the surgical procedure at the location remote from the patient whilst viewing the end effector movement on the visual display during the surgical procedure. While viewing typically a three-dimensional image of the surgical site on the visual display, the surgeon performs the surgical procedures on the patient by manipulating master control devices at the remote location, which master control devices control motion of the remotely controlled instruments.
Typically, such a telesurgery system can be provided with at least two master control devices (one for each of the surgeon's hands), which are normally operatively associated with two robotic arms on each of which a surgical instrument is mounted. Operative communication between master control devices and associated robotic arm and instrument assemblies is typically achieved through a control system. The control system typically includes at least one processor which relays input commands from the master control devices to the associated robotic arm and instrument assemblies and from the arm and instrument assemblies to the associated master control devices in the case of, e.g., force feedback, or the like. One example of a robotic surgical system is the DAVINCI™ system available from Intuitive Surgical, Inc. of Mountain View, Calif.
Just as robotic surgical systems have been found advantageous, so too has use of ultrasound energy in surgery been found beneficial. A number of patents disclose ultrasonic treatment instruments for both open surgery and manually-performed endoscopic surgery. These patents include U.S. Pat. No. 6,056,735 issued May 2, 2000, entitled Ultrasound Treatment System; U.S. Pat. No. 6,066,151 issued May 23, 2000, entitled Ultrasonic Surgical Apparatus; U.S. Pat. No. 6,139,561 issued Oct. 31, 2000, entitled Ultrasonic Medical Instrument; U.S. Pat. No. 6,165,191 issued Dec. 26, 2000, entitled Ultrasonic Treating Tool; and U.S. Pat. No. 6,193,709 issued Feb. 27, 2001, entitled Ultrasonic Treatment Apparatus. The full disclosure of each of these patents is incorporated herein by reference.
A typical ultrasound treatment instrument for manual endoscopic surgery is the SonoSurg® instrument model T3070 made by Olympus Optical Co., Ltd., of Tokyo, Japan. Other examples of manually operated ultrasound treatment instruments are the Harmonic Scalpel® LaparoSonic® Coagulating Shears, made by Ethicon Endo-Surgery, Inc, of Cincinnati, Ohi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Robotic surgical tool with ultrasound cauterizing and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Robotic surgical tool with ultrasound cauterizing and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robotic surgical tool with ultrasound cauterizing and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.