RNase L activators and antisense oligonucleotides effective to t

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C07H 2100

Patent

active

059986026

ABSTRACT:
The invention concerns a compounds and methods for treating infection with Respiratory Syncytial Virus. The compounds comprise an antisense portion, which is complementary to a normally single stranded portion of the RSV antigenomic strand (the mRNA strand), a linker and a oligonucleotide activator of RNase L, a ubiquitous non-specific RNase. The method comprised forming a complex of an activated RNase L and the antisense molecule. The application teaches methods of determining which portions of the RSV antigenomic strand are normally single-stranded. The application teaches that an antisense oligonucleotide having the sequence of residues 8281-8299 of the RSV genome is particularly useful to practice the invention and provides in vitro results superior to those obtainable with the conventional drug of choice, ribavirin.

REFERENCES:
patent: 5532130 (1996-07-01), Alul
patent: 5583032 (1996-12-01), Torrence et al.
patent: 5585479 (1996-12-01), Hoke et al.
Branch. A good antisense molecule is hard to find. Trends Biochem. Sci. 23: 45-50, Feb. 1998.
Gewirtz et al. Facilitating oligonucleotide delivery: Helping antisense deliver on its promise. Proc. Nat. Acad. Sci. USA 93: 3161-3163, Apr. 1996.
Shaw et al. Modified deoxyoligonucleotides stable to exonuclease degredation in serum. Nuc. Acids Res. 19: 747-750, Mar. 1991.
Antisense '97: A roundtable on the state of the industry. Nature Biotechnology 15: 519-524, Jun. 1997.
Gura. Antisense has growing pains. Science 270: 575-577, Oct. 1995.
Stull et al. Antigene, ribozyme and aptamer nucleic acid drugs: Progress and prospects. Pharm. Res. 12: 465-483, Apr. 1995.
Whitton. Antisense treatment of viral infection. Adv. Virus Res. 44: 267-303, 1994.
Cirino et al., 1997, "Targeting RNA Decay with 2',5' Oligoadenylate-Antisense in Respiratory Syncytial Virus-Infected Cells", Proc. Natl. Acad. Sci. USA 94:1937-1942.
Beigelman et al., 1995, "Synthesis and Biological Activities of a Phosphorodithioate Analog of 2',5'-Oligoadenylate", Nucl. Acids. Res. 23:3989-3994.
Maitra et al., 1995, "Catalytic Cleavage of an RNA Target by 2-5A-Antisense and 2-5A Dependent RNase", J. Biol.Chem. 270:15071-15075.
Englund, 1994, "High-Dose, Short Duration Ribavirin Aerosol Therapy Compared with Standard Therapy in Children with Suspected Respiratory Syncytial Virus Infection", J. Pediatrics 125:635-641.
Maran et aL., 1994, "Blockage of NF-kB Signaling by Selective Ablation of an mRNA Target by 2-5A-Antisense Chimeras", Science 265:789-792.
Merolla et al., 1995, "Respiratory Syncytial Virus Replication in Human Lung Epithelial Cells: Inhibition by Tumor NecrosisFfactor-a and Interferon-a8247", Am. J. Rsp. and Crit. Care Med.
Silverman, 1994, "Fascination with 2-5A-Dependent RNase: A Unique Enzyme that Functions in Interferon Action", J. Interferon Res. 14:101-104.
Swiderski et al., 1994, "Polystyrene Reverse-Phase Ion-Pair Chromatography of Chimeric Ribozymes", Analytical Biochemistry 216: 83-88.
Xiao et al., 1994, "Synthesis of 5'-Thiophosphate Analogue of 2-5A, a Phosphatase Resistant Activator of the 2-5A Dependent Ribonuclease", Bioorganic & Med. Chem. Letts 4:2609-2614.
Balotta et al., 1993, "Antisense Phosphorothioate Oligodeoxynucleotides Targeted to the vpr Gene Inhibit Human Immunodeficiency Virus Type 1 Replication in Primary Human Macrophages", J. Virology 67:4409-4414.
Cirino et al., 1993, "Restricted Replication of Respiratory Syncytial Virus in Human Alveolar Macrophages", J. Gen. Virol. 74:1527-1537.
Hassel et al., 1993, "A Dominant Negative Mutant of 2-5A-Dependent RNase Suppresses Antiproliferative and Antiviral Effects of Interferon", The EMBO Journal 12:3297-3304.
Lesiak et al., 1993, "2',5'-Oligoadenylate-Antisense Chimeras-Synthesis and Properties", Bioconjugate Chem 4:467-472.
Midulla et al., 1993, "Concise Communication: Respiratory Syncytial Virus Lung Infection in Infants: Immunoregulatory Role of Infected Alveolar Macrophages", J. Inf. Dis. 168:1515-1519.
Torrence et al., 1993, "Targeting RNA for Degradation with a 2',5'-Oligoadenylate-Antisense Chimera", Proc. Natl. Acad. Sci. USA 90:1300-1304.
Agrawal, 1992, "Antisense Oligonucleotides as Antiviral Agents", Trends Biotechnol. 10:152-158.
Panuska et al., 1992, "Respiratory Syncytial Virus Infection of Alveolar Macrophages in Adult Transplant Patients", Am. Rev. Resp. Dis. 145:934-939.
Gribaudo et al., 1991, "Interferon Action: Binding of Viral RNA to the 40-Kilodalton 2'-5' Oligoadenylate Synthetase in Interferon-Treated HeLa Cells Infected with Encelphalomyocarditis Virus", J. Virol. 65:1748-1757.
McIntosh and Chanock, 1990, "Respiratory Syncytial Virus", In Virology, 2nd edition. Edited by BN Fields, DM Knipe et al., Raven Press, Ltd, New York, pp. 1045-1072.
Letsinger et al., 1989, "Cholesteryl-Conjugated Oligonucleotides: Synthesis, Properties, and Activity as Inhibitors of Replication of Human Immunodeficiency Virus in Cell Culture", Proc. Natl. Acad. Sci. USA 86:6553-6556.
Rysiecki et al., 1989, "Constitutive Expression of a 2',5'-Oligoadenylate Synthetase cDNA Results in Increased Antiviral Activity and Growth Suppression", J. Interferon. Res. 9:649-657.
Zuker, 1989, "Computer Prediction of RNA Structure", Methods in Enzymology 180:262-288.
Zuker, 1989, "On Finding All Suboptimal Foldings of an RNA Molecule", Science 244:48.
Goodchild, 1988, "Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides", Proc. Natl. Acad. Sci. USA. 85:5507-5511.
Gruenert et al., 1988, "Characterization of Human Tracheal Epithelial Cells Transformed by an Origin Defective Simian Virus 40", Proc. Natl. Acad. Sci. USA. 85:5951-5955.
Chebath et al., 1987, "Constitutive Expression of (2'-5') Oligo A Synthetase Confers Resistance to Picornavirus Infection", Nature 330:587-588.
Freier et al., 1986, "Improved Free-Energy Parameters for Predictions of RNA Duplex Stability", Proc. Natl. Acad. Sci. USA 83:9373-9377.
Zamecnik et al., 1986, "Inhibition of Replication and Expression of Human T-Cell Lymphotropic Virus Type III in Cultured Cells by Exogenous Synthetic Oligonucleotides Complementary to Viral RNA", Proc. Natl. Acad. Sci. USA. 83:4143-4146.
Hall et al., 1983, "Aerosolized Ribavirin Treatment of Infants with Respiratory Syncytial Viral Infection", N. Eng. J. Med. 308:1443-1447.
Taber et al., 1983, "Ribavirin Aerosol Treatment of Bronchiolitis Associated with Respiratory Syncytial Virus Infection in Infants", Pediatrics 72:613-618.
Floyd-Smith et al., 1981, "Interferon Action: RNA Cleavage Pattern of a (2'-5') Oligoadenylate-Dependent Endonuclease", Science 212:1020-1032.
Wreschner et al., 1981, "Ribosomal RNA Cleavage, Nuclease Activation and 2-5A(ppp(A2'p)nA) in Interferon-Treated Cells", Nucleic Acids Res. 9:1571-1581.
Wreschner et al., 1981, "Interferon Action-Sequence Specificity of the ppp(A2'p)nA-Dependent Ribonuclease", Nature 289:414-417.
Salser, 1977, "Globin mRna Sequences: Analysis of Base Pairing and Evolutionary Implications", Cold Spring Harbor Symposium on Quantitative Biology 42:985-1002.
Panuska et al., 1995, "Respiratory Syncytial Virus Induces Interleukin-10 by Human Alveolar Macrophages", J. Clin. Invest. 96:2445-2453.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

RNase L activators and antisense oligonucleotides effective to t does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with RNase L activators and antisense oligonucleotides effective to t, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RNase L activators and antisense oligonucleotides effective to t will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-825389

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.