Rheologically modified confectioneries produced by employing...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Plant material is basic ingredient other than extract,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S093000, C426S660000

Reexamination Certificate

active

06391373

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to confectioneries and their methods of preparation. Improving the packing of solids-containing ingredients provides the confectioneries of this invention having a total fat content of about 16% to about 35% by weight and with desirable rheology characteristics. The confectioneries of the present invention demonstrate good performance when used in enrobing, moulding or extruding operations.
2. Related Background Art
Confectionery food products, made from ingredients including carbohydrate sweeteners, such as sucrose, milk solids, cocoa solids and an edible oil or fat, such as cocoa butter, are well known. Candy, and particularly chocolate, comprise an important group of these food products.
The most popular chocolate or chocolate candy consumed in the United States is in the form of sweet chocolate or milk chocolate. Chocolate is a dispersion of very fine, solid ingredient particles suspended in a fat phase. Milk chocolate is a confection which contains milk solids, milk fat, chocolate liquor, a nutritive carbohydrate sweetener, cocoa butter and may include a variety of other ingredients such as emulsifying agents, flavorings and other additives. Crumb chocolate is a type of milk chocolate wherein wet milk and carbohydrate sweetener ingredients, and optionally chocolate liquor, are pre-combined then co-dried, at elevated temperatures, to form a milk crumb. The milk crumb is then used to prepare this type of milk chocolate. Sweet chocolate contains higher amounts of chocolate liquor, but lower amounts of milk solids than milk chocolate. Semi-sweet chocolate requires at least 35% by weight chocolate liquor and is otherwise similar in definition to sweet chocolate. Dark chocolate, generally containing only chocolate liquor, a nutritive carbohydrate sweetener and cocoa butter, is by definition either a sweet chocolate or a semisweet chocolate. Buttermilk chocolate and skim milk chocolate differ from milk chocolate in that the milk fat comes from various forms of sweet cream buttermilk and skim milk, respectively. Skim milk requires the total amount of milk fat to be limited to less than the minimum for milk chocolate. Mixed dairy product chocolates differ from milk chocolate in that the milk solid includes any or all of the milk solids listed for milk chocolate, buttermilk chocolate or skim milk chocolate. White chocolate differs from milk chocolate in that it contains no non-fat cocoa solids.
Chocolate may take the form of solid pieces of chocolate, such as bars or novelty shapes, and may also be incorporated as a component of other, more complex confections where chocolate is combined with and generally coats other foods such as caramel, peanut butter, nougat, fruit pieces, nuts, wafers, ice cream or the like. These foods are characterized as microbiologically shelf-stable at 65°-85° F. (18-29° C.), under normal atmospheric conditions. Generally, chocolate used to coat or surround foods must be more fluid than chocolates used for plain chocolate solid bars or novelty shapes.
The process of coating chocolate onto a food is known as enrobing. Enrobing is accomplished when chocolate, in a fluid state and having a proper viscosity and yield value, is poured over a food to completely cover the food. Alternatively, the food may be dipped into the fluid chocolate. Proper viscosity and yield value of the chocolate are required for smooth and even flow of the chocolate over the surface of the food to be coated.
Chocolate can also be moulded. By moulding, it is meant that chocolate, either plain or mixed with nuts, raisins, crisped rice and the like, is deposited in moulds, allowed to cool and hardened into solid pieces and then removed from the mould. Chocolate moulded into plain chocolate pieces may be somewhat more viscous than coating chocolates since the chocolate can be vibrated into a mould over a longer period of time than allowed in enrobing.
Novelty shapes, such as chocolate chips, made of plain chocolate may be formed by extrusion, typically onto a cold belt. Extrusion may also be conducted using chocolate in a solid or semi-solid state. Other forming techniques known in the art include flaking, kibbling, sheeting, depositing and the like. The chocolate used for extrusion must be more resistant to flow than chocolate used for moulding and have a high yield value. Chocolates used in extruding operation typically will have yield values of less than 600 dynes/cm
2
and plastic viscosity values of less than 100 poise. The relatively high viscosity and yield value are necessary for the chocolate to retain the extruded shape as it hardens.
Since melted chocolate is a suspension of solid particles, e.g., sugar, milk powders and cocoa solids, in a continuous liquid fat phase of cocoa butter, chocolate suspensions have non-Newtonian flow behavior including the presence of a yield stress. The yield stress represents a minimum threshold of force that must be applied to a suspension, for example the force applied to toothpaste, in order to make it flow. Below this threshold, no flow occurs. The non-Newtonian behavior of chocolate is sometimes described by fitting the rheological data to the Casson equation which defines a Casson yield value and Casson plastic viscosity. This minimum force mentioned above is then referred to as the “Casson yield value”. The “Casson plastic viscosity” approximates the work needed to keep the suspension flowing uniformly. Alternatively, an apparent viscosity can be used to describe the flow behavior of chocolate. The rheological characteristics of chocolate, and the ability to maintain control over the rheology of chocolate are very important. Chocolate is a suspension of very fine particles (usually less than 50-60 microns) in fat (cocoa butter, milk fat). The cocoa butter coats and suspends the particles and provides the mouthfeel typically associated with a smooth, rich chocolate. The amount of cocoa butter present in chocolate affects the rheological properties of the chocolate and, consequently, must be varied according to the intended use of the chocolate. However, when the cocoa butter (fat) content of chocolate is reduced to prepare reduced-fat chocolates, alternate means of achieving the proper rheological properties of the chocolate must be developed. Emulsifiers, e.g. lecithin, have long been used to enhance the rheological properties of commercial chocolates. Exemplary emulsifiers include lecithin derived from vegetable sources such as soybean, safflower, corn, etc., fractionated lecithins enriched in either phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol or any combination, mono- and di-glycerides, phosphated mono- and di-glycerides/diacetyl tartaric acid esters of mono- and di-glycerides (PMD/DATEM), monosodium phosphate derivatives of mono- and di-glycerides of edible fats or oils, sorbitan monostearate, polyoxyethylene sorbitan monostearate, hydroxylated lecithin, polyglycerol esters of fatty acids, polyglycerol polyricinoleate (PGPR), propylene glycol mono and di-esters of fats and fatty acids, and the like.
The addition of about 0.1-0.3% by weight soy lecithin typically reduces the viscosity of chocolate by more than 10 times its own weight of cocoa butter. Numerous other emulsifiers similarly lower the yield value or the plastic viscosity. Emulsifier use has generally been limited to less than 1% by weight of the chocolate formulation due to problems such as off-flavors, legal controls, or negative rheological effects occurring at higher use rates. Since full-fat chocolates, having about 25% to 36% by weight total fat, typically contain about 0.1% to about 0.5% by weight soy lecithin, significantly lower fat levels cannot be achieved by merely altering the amount of emulsifier incorporated into the chocolate.
Particle size of the non-fat solid ingredients is also known to influence the viscosity of chocolate. Generally, as the particle size of the solids-containing ingredients decreases, viscosity increases. Moreover, it is also recog

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rheologically modified confectioneries produced by employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rheologically modified confectioneries produced by employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rheologically modified confectioneries produced by employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837554

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.