Response regulator

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252100, C435S320100, C435S325000, C536S023700

Reexamination Certificate

active

06225087

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, the invention relates to polynucleotides and polypeptides of the response regulator family, as well as their variants, hereinafter referred to as “Response regulator,” “Response regulator polynucleotide(s),” and “Response regulator polypeptide(s)” as the case may be.
BACKGROUND OF THE INVENTION
The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid. Since its isolation more than 100 years ago,
Streptococcus pneumoniae
has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with
Streptococcus pneumoniae
, many questions concerning the virulence of this microbe remain. It is particularly preferred to employ Streptococcal genes and gene products as targets for the development of antibiotics.
While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.
Many two component signal transduction systems (TCSTS) have been identified in bacteria (Stock, J. B., Ninfa, A. J. & Stock, A. M.(1989) Microbiol. Rev. 53, 450-490). These are involved in the bacterium's ability to monitor its surroundings and adapt to changes in its environment. Several of these bacterial TCSTS are involved in virulence and bacterial pathogenesis within the host.
Response regulators are components of the TCSTS. These proteins are phosphorylated by histidine kinases and in turn once phosphorylated effect the response, often through a DNA binding domain becoming activated. The response regulators are characterized by a conserved N-terminal domain of approximately 100 amino acids. The N-terminal domains of response regulators as well as retaining five functionally important residues, corresponding to the residues D12, D13, D57, T87, K109 in CheY (Matsumura, P., Rydel, J. J., Linzmeier, R. & Vacante, D. (1984) J. Bacteriol. 160, 36-41), have conserved structural features (Volz, K. (1993) Biochemistry 32, 11741-11753). The 3-dimensional structures of CheY from
Salmonella typhimurium
(Stock, A. M., Mottonen, J. M., Stock J. B. & Schutt, ,C. E. (1989) Nature, 337, 745-749) and
Escherichia coli
(Volz, K. & Matsumura, P. (1991) J. Biol. Chem. 266, 15511-15519) and the N-terminal domain of nitrogen regulatory protein C from
S. typhimurium
(Volkman, B. F., Nohaile, M. J., Amy, N. K., Kustu, S. & Wemmer, D.E. (1995) Biochemistry, 34 1413-1424), are available, as well as the secondary structure of SpoOF from Bacillus subtilis (Feher, V. A., Zapf, J. W., Hoch, J. A., Dahiquist, F. W., Whiteley, J. M. & Cavanagh, J. (1995) Protein Science, 4, 1801-1814). These structures have a (&agr;/&bgr;)5 fold. Several structural residues are conserved between different response regulator sequences, specifically hydrophobic residues within the &bgr;-sheet hydrophobic core and sites from the &agr;-helices. This family of response regulators includes DegU protein from
Bacillus subtilis
. DegU is the response regulator of the TCSTS involved in regulating the production of extracellular proteases (Henner, D. J., Yang, M. & Ferrari, E. (1988) J.Bacteriol. 170, 5102-5109).
Histidine kinases are components of the TCSTS which autophosphorylate a histidine residue. The phosphate group is then transferred to the cognate response regulator. The Histidine kinases have five short conserved amino acid sequences (Stock, J. B., Ninfa, A. J. & Stock, A. M.(1989) Microbiol. Rev. 53, 450-490, Swanson, R. V., Alex, L. A. & Simon, M. I.(1994) TIBS 19 485-491). These are the histidine residue, which is phosphorylated, followed after approximately 100 residues by a conserved asparagine residue. After another 15 to 45 residues a DXGXG motif is found, followed by a FXXF motif after another 10-20 residues. 10-20 residues further on another glycine motif, GXG is found. The two glycine motifs are thought to be involved in nucleotide binding.
Among the processes regulated by TCSTS are production of virulence factors, motility, antibiotic resistance and cell replication. Inhibitors of TCSTS proteins would prevent the bacterium from establishing and maintamg infection of the host by preventing it from producing the necessary factors for pathogenesis and thereby have utility in anti-bacterial therapy.
The frequency of
Streptococcus pneumoniae
infections has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate
Streptococcus pneumoniae
strains which are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-nicrobial agents, vaccines, drug screening methods, and diagnostic tests for this organism.
Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces “functional genomics,” that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on “positional cloning” and other methods. Functional genomics relies heavily on the various tools of bioinfornatics to identify gene sequences of potential interest from the many molecular biology databases now available as well as from other sources. There is a continuing and significant need to identify and characterize further genes and other polynucleotides sequences and their related polypeptides, as targets for drug discovery.
Clearly, there exists a need for polynucleotides and polypeptides, such as the Response regulator embodiments of the invention, that have a present benefit of, among other things, being useful to screen compounds for antimicrobial activity. Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease. There is also a need for identification and characterization of such factors and their antagonists and agonists to find ways to prevent, ameliorate or correct such infection, dysfunction and disease.
SUMMARY OF THE INVENTION
The present invention relates to Response regulator, in particular Response regulator polypeptides and Response regulator polynucleotides, recombinant materials and methods for their production. In another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagonist compounds. In a still further aspect, the invention relates to diagnostic assays for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Response regulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Response regulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Response regulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.