Resonant controlled qubit system

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S014000

Reexamination Certificate

active

06900456

ABSTRACT:
A circuit comprising a superconducting qubit and a resonant control system that is characterized by a resonant frequency. The resonant frequency of the control system is a function of a bias current. The circuit further includes a superconducting mechanism having a capacitance or inductance. The superconducting mechanism coherently couples the superconducting qubit to the resonant control system. A method for entangling a quantum state of a first qubit with the quantum state of a second qubit. In the method, a resonant control system, which is capacitively coupled to the first and second qubit, is tuned to a first frequency that corresponds to the energy differential between the lowest two potential energy levels of the first qubit. The resonant control system is then adjusted to a second frequency corresponding to energy differential between the lowest two potential energy levels of the second qubit.

REFERENCES:
patent: 5917322 (1999-06-01), Gershenfeld et al.
patent: 6128764 (2000-10-01), Gottesman
patent: 6317766 (2001-11-01), Grover
patent: 6459097 (2002-10-01), Zagoskin
patent: 6504172 (2003-01-01), Zagoskin et al.
patent: 6563311 (2003-05-01), Zagoskin
patent: 6605822 (2003-08-01), Blais et al.
patent: 6614047 (2003-09-01), Tzalenchuk et al.
patent: 6670630 (2003-12-01), Blais et al.
patent: 2002/0188578 (2002-12-01), Amin et al.
patent: 2003/0193097 (2003-10-01), Il'ichev et al.
patent: 2003/0224944 (2003-12-01), Il'ichev et al.
patent: 2004/0012407 (2004-01-01), Amin et al.
U.S. Appl. No. 10/419,024, Blais et al., filed Apr. 17, 2003.
U.S. Appl. No. 10/798,737, Blais et al., filed Mar. 10, 2004.
U.S. Appl. No. 10/801,335, Blais et al., filed Mar. 15, 2004.
U.S. Appl. No. 10/801,336, Blais et al., filed Mar. 15, 2004.
U.S. Appl. No. 06/341,974, Il'ichev et al., filed Dec. 18, 2001.
U.S. Appl. No. 60/349,663, Amin et al., filed Jan. 15, 2002.
U.S. Appl. No. 60/372,958, Il'ichev et al., filed Apr. 15, 2002.
U.S. Appl. No. 60/556,778, Hilton et al., filed Mar. 26, 2004.
U.S. Appl. No. 60/557,747, Amin et al., filed Mar. 29, 2004.
U.S. Appl. No. 60/557,750, Grajcar et al., filed Mar. 29, 2004.
W.A. Al-Saidi and D. Stroud, “Eigenstates of a small Josephson Junction coupled to a resonant cavity”, Physical Review B, 65, pp. 014512-1 to 014512-7 (2001).
A.D. Armour, M.P. Blencowe, and K.C. Schwab, “Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box”, Physical Review Letters, 88, pp. 148304-1 to 148301-4 (2002).
A. Barenco, C.H. Bennet, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A, 52, pp. 3457-3467 (1995).
A. Blais, “Quantum network optimization”, Physical Review A, 64, pp. 022312-1 to 022312-5 (2001).
G. Blatter, V.B. Geshkenbein, and L. Ioffe, “Design aspects of superconducting-phase quantum bits,” Physical Review B, 63, pp. 174511-1 to 174511-9 (2001).
D. Born, T. Wagner, W. Krech, U. Hubner, and L. Fritzsch, “Fabrication of ultrasmall tunnel junctions by electron beam direct-writing”, IEEE Transactions on Applied Superconductivity, 11, pp. 373-376 (2001).
O. Bulsson and F.W.J. Hekking, “Entangled states in a Josephson charge qubit coupled to a superconducting resonator”, arXiv.org:cond-mat/0008275 (2000), website last accessed on Jun. 4, 2004.
A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M.H. Devoret, “Implementation of a combined charge-phase quantum bit in a superconducting circuit”, Physica C, 367, pp. 197-203 (2002).
D. Deutsch, “Quantum theory, the Church-Ruting principle and the universal quantum computer”, Proceedings of the Royal Society of London A, 400, pp. 97-115 (1985).
D.P. DiVincenzo, “The physical implementation of quantum computation”, arXiv.org:quant-ph/0002077 (2000), website last accessed on Jun. 4, 2004.
Economist, “Quantum Dreams”, pp. 1-3 (Mar. 8, 2001).
R.P. Feynman, “Simulating physics with computers”, International Journal of Theoretical Physics, 21, pp. 467-488 (1982).
J.R. Friedman, V. Patel, W. Chen. S.K. Tolpygo, and J.E. Lukens, “Quantum superposition of distinct macroscopic states”, Nature, 406, pp. 43-46 (2000).
L.K. Grover, “A fast quantum mechanical algorithm for database search”, Proceedings of the 28th STOC, pp. 212-219 (1996).
S. Han, Y. Yu, X. Chu, S.-I. Chu, and Z. Wang, “Time-resolved measurement of dissipation-induced decoherence in a Josephson junction”, Science, 293, pp. 1457-1459 (2001).
F.W.J. Hekking, O. Buisson, F. Balestor, and M.G. Vergniory, “Cooper Pair Box Coupled To a Current-Biased Josephson Junction”, arXiv.org:cond-mat/0201284 (2002), website last accessed on Jun. 4, 2004.
X. Hu, R. de Sousa, and S. Das Sarma, “Decoherence and dephasing in spin-based solid state quantum computers”, arXiv.org:cond-mat/0108339 (2001), website last accessed on Jun. 4, 2004.
P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M.H. Devoret, “Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor”, Physical Review Letters, 72, pp. 2458-2462 (1994).
A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, “Dynamics of the dissipative two-state system”, Reviews of Modern Physics, 59, pp. 1-85 (1987).
Yu, Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices”, Reviews of Modern Physics, 73, pp. 357-400 (2001).
F. Marquardt and C. Bruder, “Superposition of two mesoscopically distinct quantum states; Coupling a Cooper-pair box to a large superconducting island”, Physical Review B, 63, pp. 054514-054520 (2001).
J. Martinis, S. Nam, J. Aumentado, and C. Urbina, “Rabi Oscillations in a Large Josephson-Junction Qubit”, Physical Review Letters, 89, pp. 117901-117904 (2002).
J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, and S. Lloyd, “Josephson persistent-current qubit,” Science 285, pp. 1036-1039 (1999).
Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box”, Nature, 398, pp. 786-788 (1999).
T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, and J.J. Mazo, “Superconducting persistent-current qubit”, Physical Review B, 60, pp. 15398-15413 (1999).
F. Plastina and G. Falci, “Communicating Josephson qubits”, arXiv.org:cond-mat/0206586 (2002), website last accessed on Jun. 4, 2004.
P. Shore, “Polynomial-Time Algorithms for Prime Factorization and discrete Logarithms on a Quantum Computer,” SIAM Journal of Computing 26, pp. 1484-1499 (1997).
D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, “Manipulating the quantum state of an electrical circuit”, Science 296, pp. 886-889 (2002).
C.H. van der Wal, A.C.J. rer Haar, F.K. Wilheim, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, and J.E. Mooij, “Quantum superposition of macroscopic persistent-current states”, Science, 290, pp. 773-777 (2000).
Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, “Coherent temporal oscillations of macroscopic quantum states in a Josephson junction”, Science, 296, pp. 889-892 (2002).
W.H. Zurek, “Decoherence and the transition from quantum to classical”, Physics Today, 44, 10, pp. 36-44 (1991).
Ulrich Weiss,Quantum Dissipative Systems,2ndedition, World Scientific Publishing Co. Pte. Ltd., front page, copyright page, pp. 164-174, 240-251, and 274-380 (1999).
S. L. Braunstein and H.-K. Lo, eds.,Scalable Quantum Computers,Wiley-VCH, front page, copyright page and pp. 1-13 (2001).
DiVincenzo, D.P., 2000, “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, pp. 771-783, also pub

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resonant controlled qubit system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resonant controlled qubit system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resonant controlled qubit system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3400065

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.