Electrical computers and digital processing systems: support – Computer power control
Reexamination Certificate
1999-12-15
2003-02-25
Butler, Dennis M. (Department: 2185)
Electrical computers and digital processing systems: support
Computer power control
C713S340000
Reexamination Certificate
active
06526515
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to systems and methods for interconnecting computer peripherals and computing devices. More specifically, the present invention provides a system and method for adapting one or more computer peripherals to a single computer interface slot and for providing an operative connection between the peripheral and the computing device.
2. State of the Art
The present invention generally encompasses interfacing computer peripherals with computers. To understand the benefits derived from the embodiments of the invention to be described herein, it is helpful to understand the existing state of the art and to see why it fails to provide the advantages and benefits of the preferred and alternative embodiments of the present invention. It is also beneficial to a reader to consider the following materials, which are herein incorporated by reference: U.S. patent application Ser. No. 08/399,728 filed on Mar. 7, 1995 and PCT patent application serial no. PCT/US96/03248 filed on Mar. 7, 1996.
The first improvement of the present invention to be described generally pertains to portable computers, but has application with many other types of digital electronic devices. Portable computers are generally understood to include the family of computers known as laptops, notebooks and portables. They are known as portables because they are generally smaller units compared to desktop computers which can more easily be carried from place to place and used at remote locations, often away from plug-in power sources such as AC power outlets. The benefits of mobile computing can be substantial. However, it is often the case that the versatility of these portables is sacrificed for the sake of small size, lower power requirements, and generally any other considerations that make the computer portable. Therefore, peripheral components which are often a part of less easily portable desktop computer systems are not as easily integrated within a portable computer system. These same considerations also apply in the case of many other digital electronic devices.
Because space is limited within a chassis of a portable computer, and power constraints dictate that power drain must be kept to a minimum, most portable computing devices have only one bay which can be used to house only one of various peripheral devices at any given time. This bay is often referred to as a multi-function bay (also referred to herein as a peripheral bay or peripheral slot) when more than one type of peripheral can be inserted therein to communicate with the host portable computer. A floppy drive is often the default peripheral of choice to be placed in the bay because it is used nearly universally for data transfer. However, a CD-ROM drive has also become an almost indispensable peripheral for computers today. Therefore, when a CD-ROM drive is needed, the floppy drive is removed and the CD-ROM drive is inserted in its place, or swapped.
A significant drawback of the single multi-function bay portable computer described above is that only one peripheral device can be used at a time. Furthermore, it was also not mentioned that “hot-swapping”, or the replacement of one peripheral device with another when the computer is operational, is typically not possible for floppy drives, CD-ROM drives and similar peripherals. Therefore, the portable computer has to be completely powered down before the swap can be made. When more than one peripheral component is needed or when the swapping of two peripherals must be executed more than once, the cycle of powering down, swapping, and then powering up again can become tedious and wasteful of time.
Therefore, it would be an advantage over the prior art to provide a portable computer which can be simultaneously coupled to more than one computer peripheral which can be swapped in and out, and thus take advantage of the ability to have more than one of the computer peripherals electrically coupled to the portable computer, but without having to swap them. These advantages include the ability to have computer peripherals operatively connected directly with a computing device.
The next improvement of the present invention to be described pertains less specifically to the portable computer, and more to the portable computer peripherals which are swapped in and out of the single multi-function bay. Specifically, consider the situation where a portable computer is purchased with some portable computer peripherals. Typically, these portable computer peripherals are the only peripherals which will operatively connect with the portable computer. Notwithstanding the various reasons for this occurrence such as proprietary connectors, pinouts or timing schemes, the result is that portable computer peripherals will often only operatively connect with the portable computers for which they were specifically designed. Now consider that the same user also has a desktop computer. It is often the case that the same peripherals needed for the portable computer are also needed for the desktop computer. Consequently, the user is forced to buy the same peripherals for the desktop computer that were already purchased for the portable computer. The result is needless expense to the user because of redundancy in functionality of peripherals.
It would be an advantage over the prior art to be able to use the portable computer peripherals with the desktop computer despite the proprietary nature common to the computer peripherals.
Accordingly, it is beneficial to a reader to consider the following prior art. A self-adapting interface assembly linking remote peripheral modules to a host computer I/O port via a serial communication cable has been disclosed by Wells, et al, U.S. Pat. No. 5,457,784, wherein circuitry senses the electrical signals present on the cable and automatically configures the hardware and software to reflect the appropriate serial communication interface specification.
The primary disadvantage of such an approach is that the interfaces are limited to simple serial I/O communication links and is not extendable to the more complex computer parallel bus protocols and their associated “bridging” requirements.
Thus, a significant improvement of the present invention features a predetermined and fixed high speed interface adaptation between two of the group that includes both the high speed serial such as USB and Firewire (IEEE1394) and the massively parallel bus protocols such as those conforming to the interface specifications PCMCIA, SCSI, IDE, FDD, and ATAPI, as examples. Further, since the interface protocol and hardware is always fixed and unique to the specific application, the cost and space for the reprogrammable drivers and receivers and the multiple voltage levels of Wells are avoided.
In accordance with yet another improvement of the present invention, provision is made to provide additional current supplying capacity to a computer peripheral, such as a ZIP™ drive, at times when the current supplied by the portable or desktop computer interface is temporarily not sufficient. For example, the current available under some interface standards may be less than that temporarily required by a computer peripheral, such as during load current changes associated with a starting a disk drive motor and moving of the magnetic heads. The present invention provides this supplementary current to maintain the satisfactory operation of the peripheral.
Further, although the above interface standards were designed to operatively connect and provide power for a plurality of peripheral devices, including CD-ROM, fixed disk drives, and removable disk drives, applications using these interfaces were necessarily restricted to short cable lengths due to the voltage drops associated with the cable impedance under transient high current loading conditions. Thus, at the remote end of longer cables, voltages would drop below the minimum input specification requirements of a peripheral device. While it is well known by one skilled in the art that a low cable voltage
Charles Paul
Hoendervoogt Jason
Marsh David
Butler Dennis M.
Jackson & Walker, LLP
Mobility Electronics Inc.
LandOfFree
Remote pluggable system having bays for attachment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote pluggable system having bays for attachment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote pluggable system having bays for attachment of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3164995