Remote access-controlled communication

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S152000, C709S225000, C709S229000

Reexamination Certificate

active

06202156

ABSTRACT:

BACKGROUND
The present invention relates generally to electronic communications.
Generally, when a client establishes an electronic communication path over a network with a server at a remote location the path may not be secure. That is, messages sent between client and server may be susceptible to interception or tampering. This is especially true in communications paths initiated over large networks such as the Internet. In such unsecured environments, transfer of confidential information can be risky.
As accessibility to the Internet from remote locations continues to become more widely available and convenient, utilizing the Internet to perform tasks such as remotely accessing electronic mail and databases becomes increasingly desirable. Some methods have been developed to allow a remote user to establish secure communications sessions. For example, a variety of encryption methods have been developed at several network levels, such as at the transport protocol level (with, e.g., HTTPS) and the application level (with, e.g., encryption of transported files). As another example, firewalls can prevent access to sensitive data from unauthorized Internet clients. Current one-time password schemes can be used to allow access to the resources of a web server or network. However, such schemes often allow public access to the authentication system, thus potentially leaving the system open to “hackers” or other potential intruders.
SUMMARY
In general, in one aspect, the invention features establishing an access-controlled communications path across a network between a client and a network resource, where the client has a client network address. The client is validated to produce a validated client network address, and the client is allowed access to the network resource based upon the validated client network address.
Embodiments of the invention may include one or more of the following features. A communications path can be established between the client and a destination network address coupled to the network resource. Access to the network resource can be allowed by configuring the network resource to selectively communicate with the validated client network address. Access to the network resource can be allowed by configuring the network resource to selectively accept packets from the validated client network address. The network resource can stop accepting packets from the client network address after the client terminates the access-controlled communications path, and can continue rejecting packets until the client network address is again validated. The network resource can block communication with at least one unvalidated network address. The network resource can drop packets from unvalidated network addresses. Access to the network resource can be allowed by opening a firewall to packets from the validated client network address. Establishing a communications path between the client and the destination network address can include establishing a communications path between the client and a server through the destination network address. The server can be an HTTP server. The client network address can be an Internet Protocol (IP) address. The access-controlled communications path can be terminated after a first predetermined time period, wherein information relating to the time period can be indicated to the client. The information can include the time remaining in the time period, and how to extend the time period. The access-controlled communications path can be maintained for a first predetermined time period, after which the client can be revalidated and the access-controlled communications path maintained for a second predetermined time period based upon the revalidation. Validating can include requesting a first predetermined validation sequence from the client, and validating the client based upon a response. A second predetermined validation sequence can be requested in order to maintain the access-controlled communications path once it has been established. A derivative client can be validated in addition to the client, where the derivative client shares the client network address with the client, where the client establishes a first predetermined time period for the access-controlled communications path and the derivative client establishes a second predetermined time period for the access-controlled communications path. The first predetermined time period can be compared with the second predetermined time period to determine a longer time period, and the access-controlled communications path can be maintained based on the longer time period.
In general, in another aspect, the invention features apparatus for establishing an access-controlled communications path across a network between a client coupled to the network and a server coupled to the network, where the client has a client network address and the server has a destination network address. The apparatus includes a port coupled to the server to receive packets addressed to the destination network address. A client validation system coupled to the port, upon validating the client, allows the client to access the server based upon the client network address.
Embodiments of the invention may include one or more of the following features. When the client validation system allows the client to access the server, the client validation system can configure the port to selectively communicate with the client network address. When the client validation system allows the client to access the server, the client validation system can configure the port to selectively accept packets from the client network address. The port can drop packets from unvalidated network addresses.
In general, in another aspect, the invention features apparatus for establishing an access-controlled communications path across a network between a client coupled to the network and a network resource, where the client has a client network address. The apparatus includes a publicly-accessible port coupled to the network to receive packets addressed to the apparatus. An access-controlled port coupled to the network resource requires validation for access. A firewall coupled to the publicly-accessible port and the access-controlled port blocks packets from unvalidated network addresses. A client validation system coupled to the publicly-accessible port and the firewall, upon validating the client, configures the firewall such that packets from the client are passed through the firewall to the access-controlled port based upon the client network address.
Embodiments of the invention may include one or more of the following features. A timer can be coupled to the client validation system and the firewall, wherein the timer configures the firewall, after the client has been validated, such that after a predetermined time period, packets from the client are no longer passed through the firewall to the access-controlled port until the client is revalidated.
In general, in another aspect, the invention features a storage device tangibly storing a control program, the control program, when coupled to a control device, operating the control device to establish an access-controlled communications path across a network between a client and a network resource, where the client has a client network address. The control program is configured to operate the control device to perform functions which include validating the client to produce a validated client network address, and allowing access to the network resource based upon the destination network address.
Advantages of the invention may include one or more of the following. Remote or traveling users can access and transmit confidential information via a network such as the Internet without compromising the confidentiality of the information. By accessing a specific HTTP web site and performing a validation routine, the user can achieve an access-controlled communications path from any remote location that can access the Internet. In such a system, “hackers” or other potential intruders will not be able to ac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote access-controlled communication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote access-controlled communication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote access-controlled communication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2440721

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.