Real-time prediction of proximity resist heating and...

Radiant energy – Irradiation of objects or material – Irradiation of semiconductor devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S121000, C430S296000, C430S030000

Reexamination Certificate

active

06373071

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to the general field of electron beam lithography and, more particularly, to real-time correction of the lithography process to compensate for proximity heating of the resist.
2. Description of Related Art
The production of precise patterns on surfaces is a necessary stage in the fabrication of integrated circuits, and finds applicability in many other commercial environments as well. The typical method for creating such patterns is to coat the surface to be patterned with a chemical that undergoes a chemical transformation upon exposure to energy, a “resist.” Positive resists undergo chemical transformation on exposure to energy leading to removal of resist from the surface to be etched in the regions so exposed. Negative resists undergo other chemical transformations, such as cross-linking, leading to removal of resist in regions not exposed to energy. Both positive and negative resists are commercially useful. Thus, exposing a resist-coated surface to the appropriate pattern of energy leads to selective removal of resist according to that pattern (exposed or masked), uncovering selected regions of the underlying surface to further chemical etching in a subsequent etching step. Removal of all resist following surface etching leads to the desired pattern etched into the surface.
The energy incident on the resist is typically either electromagnetic or a beam of particles, typically ions or electrons (“e-beam”). In addition, the energy may be directed onto the resist in one of two general ways: 1) through a mask having both transparent and opaque regions therein permitting selective passage of the incident energy to create the desired pattern of exposure on the underlying resist, or 2) as a focused beam, guided so as to impact selectively only those areas requiring exposure. Exposure through a mask is the presently preferred technique for producing numerous identical patterns at reduced costs. However, the mask itself must first be made, most commonly by focused beam impact. Thus, focused beam exposure of resists remains a necessary step in the production of masks for lithography.
Direct beam “writing” of patterns onto resists has several advantages over use of a mask. Among these are avoiding the complications of alignment and registration of the mask and more precise patterning accomplished by precisely focused beams. Thus, beam lithography finds applicability in many areas of technology in addition to mask creation. However, the discussion herein will be particularly directed to e-beam lithography for the production of masks, although other applications for the methods described herein will be apparent to those having ordinary skills in the art. For economy of language we will describe e-beam lithography as typically used in the manufacture of masks, not intending thereby to limit the scope of the invention.
Precise patterning requires precise exposure of resist. For concretness of our description, we will consider the case of positive resists, which are removed from the underlying layer for subsequent etching where the positive resist is exposed to the incident e-beam. Completely analogous effects are present for negative resists as well understood in the art. A sharp boundary is desired between exposed regions and unexposed regions for both types of resist, permitting the mask designer to use more densely packed components without interference and overlap of imprecisely exposed adjacent patterns.
Precise exposure of resist requires a detailed understanding of the sensitivity of the resist to e-beam exposure. The exposure of resist to an e-beam, called the dose, is typically measured in microcoulombs per square centimeter (&mgr;C/cm
2
). The sensitivity of the resist means the electron dose (in &mgr;C/cm
2
) necessary to create the desired pattern in the resist upon development. This sensitivity is a function of the resist composition, the energy of the incident electron beam, the temperature of the resist, the resist development process and other factors as well. The changes of resist sensitivity with its temperature at the time writing occurs is a particular concern of the present invention.
Scanning the entire surface to be exposed typically involves scanning of the electron beam over a limited area while mechanical translating the surface over a much larger area. Electron beam scanning typically involves rapid transitional motion of the beam across the surface (up to approximately 10,000 cm/sec), but only covering a small region of the surface (typically around a millimeter in lateral extent). The entire substrate is moved mechanically at about 1 cm/sec but over an extent of lateral traverse sufficient that the e-beam exposes the entire surface.
It is helpful to emphasize that exposure of the resist by e-beam impact and heating of the resist are two conceptually distinct phenomena. The chemical activity of the resist leading to its useful lithographic properties is initiated by e-beam impact. The efficacy of electrons in causing this chemical activity is defined as the sensitivity of the resist. The sensitivity of the resist to e-beam impact depends in turn on many factors including the temperature of the resist at the time it is exposed. Thus, changing the temperature of the resist changes its sensitivity which may require changing the dose of electrons or the dwell time of the beam (or both) in order to achieve proper exposure. Failing to take into account changes in resist sensitivity with temperature may lead to overexposure of the resist, exposure of the resist in regions not intended to be fully exposed, and less precise patterns. Pattern “blooming” is the undesired result.
Heating of the resist occurs in two ways: 1) As an inherent adjunct effect to the impact by electrons intentionally directed onto the resist for exposure. This heating is always present in e-beam lithography and is taken into account when the resist is calibrated to specify the correct exposure. 2) In high voltage lithography, most of the electron beam energy passes through the resist and the underlying mask layer (typically very thin) and penetrates the substrate where most of it is deposited. (An exception occurs when thin substrates are used, typically in the manufacture of X-ray masks, where the substrate is itself a film so thin that most of the beam energy passes through it). Electron diffusion in a thick substrate deposits the heat from a single e-beam flash in the substrate, typically in a volume 10 or more microns (micrometers) in lateral extent (perpendicular to the e-beam direction). Subsequent thermal conduction transports a portion of this heat to the substrate surface where it heats the resist in a zone that may be tens of microns in lateral extent a few microseconds following the flash, increasing to a millimeter across after several milliseconds. (Exact numbers will depend on beam energy, the composition of the substrate and its thermal properties). Thereafter the heat has diffused so much as to have no significant effect on resist exposure. It is this second type of heating that this invention addresses and denotes as “proximity heating.” Such proximity heating depends on the previously written pattern and the time history of the pattern writing. This variability makes proximity heating particularly challenging to estimate in designing a process for high accuracy e-beam writing.
“Proximity heating” as used herein is not to be confused with the “proximity effect” related to the chemical effects of scattered electrons in the resist. Electrons in a beam passing through matter will from time to time encounter atomic nuclei or orbital electrons and undergo deflection from their line of travel, with or without loss of energy in the deflecting collision. The “proximity effect” relates to the chemical effect these scattered electrons have exposing the resist, perhaps relatively far from the intended exposure zone at which the e-beam is directed. Scattered electrons within the resist may lead to exposure away from th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real-time prediction of proximity resist heating and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real-time prediction of proximity resist heating and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time prediction of proximity resist heating and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2933409

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.