Real-time plant nutrition prescription

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06549851

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to precision agriculture methods, and, more particularly, to software, systems and methods for real-time or near real-time nutrient management based upon plant tissue analysis.
2. Relevant Background
Plants require many nutrients to grow, blossom and fruit. Most preferably, the essential nutrients needed for plant nutrition are present in adequate amounts in the soil. More commonly, one or more of the essential nutrients must be added to the soil by application of fertilizers containing nutrients in which a particular soil is lacking. Under a number of growing conditions, essential nutrients may be present in the soil in sufficient quantities, but may not be readily accessible to the plants for uptake and translocation, in which case combinations of fertilizers and plant growth enhancing compounds are applied before, during and/or after planting.
The essential nutrients include macronutrients (e.g., nitrogen “N”, phosphorus “P” and potassium “K”) which are needed by plants in relatively large quantities. The essential nutrients also include secondary nutrients (calcium “Ca”, magnesium “Mg” and sulfur “S”) which are required in lesser quantities. Micronutrients are essential nutrients which are needed in very small amounts and include iron “Fe”, manganese “Mn”, copper “Cu”, zinc “Zn”, molybdenum “Mo”, chlorine “Cl” and boron “B”. Although important, over supply of micronutrients can lead to toxicity and significant production loss consequently the indiscriminate use of micronutrient supplements can have harmful results.
Nutrient management is an increasingly difficult and yet increasingly important task. According to a long-standing principle known as Liebig's Law of the minimum, the yield of a plant is limited by the lack of a single nutrient even though there may be sufficient quantities of all the other essential nutrients. Waiting until plants show visible signs of a nutrient imbalance to establish which nutrient is limiting production, a condition often referred to as nutrient deficiency, is often too late to take effective remedial action. Plant yield has already been negatively impacted by a deficiency condition and even when the insufficiency can be remedied, production loss has occurred. All too often plants deficient in one or more nutrients cannot be saved. The challenge then is to proactively establish and supplement the nutrient or nutrients limiting production prior to the appearance of visual symptoms. Hence, the need for nutrient management systems and methodologies that enable practical treatment of nutrient shortfalls before they become deficiencies.
Historically, users managed nutrients using historical performance data and soil analysis. Before and sometimes after planting, nutrients are applied (e.g., nitrogen, zinc, etc.) to achieve soil nutrient levels matching previous seasons that had produced suitable results. However, plant requirements change from year to year, as a result of a number of environmental factors, and the ideal nutrient levels one year may produce sub-optimal results in another year. Further, nutrient management will be made more complex by increasingly strict regulations on the quantity and type of amendment that can be added directly to soil. Soil-applied nutrients tend to migrate into surrounding land and water supplies and may impact the ecosystem of these surrounding areas. As a result, regulations and self-imposed restrictions will limit the amount and timing of soil-applied nutrients.
Foliar nutrient supplements can be applied after planting to correct nutrient shortfalls. Foliar supplements are taken up into the plant much more efficiently than soil supplements, and therefore can reduce the amount of nutrients that must be added to the soil. Foliar supplements, however, are much more difficult to manage than soil supplements. Foliar supplements often benefit from sequential application of particular supplements at specific concentrations at specified time intervals. Some supplements may be applied at one time while others benefit from staggered application. Interactions between supplements and/or the crop protection products they are applied with may prevent application in certain combinations or at certain times during a growing season. Ideally, each case is managed individually to account for individual plant needs and production goals. However, selecting suitable nutrient supplements and timing schedules to correct particular nutrient shortfalls is problematic, time consuming, and generally beyond the capacity of the applicator responsible for managing the application.
In the past, foliar products were applied as a routine application where the particular products, and application timing were based upon a best guess or estimate of what was thought to be plant requirements at that time. Application rate of individual nutrients was kept low to guard against any danger of toxicity. This ad hoc approach does not take in to account variation in seasonal environmental factors. There is no attempt to target particular nutrients that may be short as a result of events of that season and therefore this method tends to produce inconsistent results from season-to-season. This approach fails to take into account the principles of Leibig's Law in that there is no attempt to establish which nutrient or combination of nutrients is limiting production in the current plant under the environmental factors of that season. Applications of broad-spectrum nutrients are made hoping they contain some of the correct nutrient to address the problem and often fail to provide sufficient quantities of the required nutrient.
Historically, users would manage the levels of a handful of key nutrients within the soil. As technology progresses, the number of nutrients that can be managed becomes unwieldy, making it difficult to implement state-of-the-art information and knowledge into a nutrient program. Trace nutrients, in particular, are difficult to manage and may easily result in serious impact to plant production. Moreover, environmental conditions such as temperature and rainfall may temporarily affect nutrient uptake such that even with near ideal soil levels part of the plants potential is lost to malnutrition. Hence, a need exists for a system and method that readily enables users to develop a comprehensive, prioritized and orchestrated nutrition program that adapts to real-time plant needs.
Recent technological advances have resulted in farm management approaches generally referred to as “precision farming”. These approaches generally involve analysis of specific plant and soil needs. In practice, users can apply fertilizers, herbicides, and pesticides at variable rates within their fields in response to specific plant and soil needs, rather than a uniform rate without regard to plant variability. Precision farming techniques promise to increase farm profits and decrease environmental impact of farming.
In large part, precision farming involves remote sensing techniques to map within-field plant and soil conditions. While remote sensing has advantages of being able to analyze large areas of land quickly, the amount of information about specific plant and soil needs that can be derived from remote sensing is limited. Several techniques are available to detect nitrogen deficiency, for example, but comprehensive analysis of a variety of nutrients is not possible. Instead, remote sensing provides a means to distinguish healthy from unhealthy plants, leaving the user to institute remedial strategies for unhealthy plants manually.
Often, remedial action for a particular plant need must occur within days of identifying the need. The difficulty in assessing remedial procedures to identify suitable nutrient amendments delays the user's response to arising issues such as excess rain, drought, or unusual temperature conditions and the like. Preferably, users need a system for identifying nutrient requirements and corrective measures before a deficienc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real-time plant nutrition prescription does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real-time plant nutrition prescription, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time plant nutrition prescription will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3074460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.