Real-time exhaust gas modular flowmeter and emissions...

Measuring and testing – Gas analysis – Gas of combustion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S118040

Reexamination Certificate

active

06470732

ABSTRACT:

FIELD OF THE INVENTION
The present invention is an exhaust gas emissions reporting system for mobile apparatus, such as automobiles, boats, aircraft, lawn mowers, snowmobiles, etc. and, more specifically, a real-time emissions reporting system which continuously measures, displays, and records the quantity of gaseous emissions (HC, CO, CO
2
, NO, and O
2
), e.g., in grams/miles driven or grams/bhp-hr, as well as fuel economy, engine and vehicle operating parameters, engine air/fuel ratio, and road grade, all at a user-selectable update rate.
THE PRIOR ART
The numerical exhaust gas emission standards established by the United States Environmental Protection Agency (EPA) apply to vehicles tested using the Federal Test Procedure (FTP). The FTP is conducted in a laboratory on a dynamometer under controlled environmental conditions where the vehicle is “driven” over a specific speed-time trace while the emissions are sampled. The same speed-time trace is used in testing all passenger cars and light-duty trucks and ideally represents typical in-use driving. During the test, the dynamometer applies steady-state and inertial loading on the vehicle simulating actual road-loading and dynamic loading encountered on the road for the same vehicle speeds. A constant volume sampler (CVS) is used to dilute the exhaust gas with air in such a way that the diluted gas flow rate is held constant as the vehicle's exhaust gas flow rate varies and to obtain a proportionate sample of the diluted exhaust gas during each of the three phases of the test. In this way, the sample's concentration of each pollutant is essentially proportional to the mass emissions of that pollutant.
In the case of vehicles employing heavy-duty engines, such as tractor trailer trucks and city buses, the associated EPA emission standard applies to the vehicle's engines which are emission tested on an engine dynamometer while operated over the EPA “transient test.” The emissions sampling system and CVS are similar to that described above for passenger cars. But the engine to be tested is attached to the engine dynamometer which applies a prescribed torque and engine speed. The engine must be removed from the associated vehicle before testing, if installed. Sometimes vehicle-based electronic sensors which are inputs to the engine's fueling system, such as a vehicle speed sensor, must be left disconnected or must have simulated values during the emissions test. This may lead to emissions measurements which differ from real-world values.
For a manufacturer to obtain a certificate of conformity permitting the sale of a particular family of vehicles or engines, the manufacturer must demonstrate compliance with applicable EPA emission standards. A major part of the demonstration for passenger cars and light-duty vehicles is passing the FTP and/or heavy-duty engines is passing the transient test. Another, and usually opposing, goal for a manufacturer to meet is maximizing vehicle performance or fuel economy. Because the two goals are usually mutually opposed, and since the FTP and transient test are so well defined and repeatable, meeting the certification emissions standards often becomes a process of “tweaking” the calibration values used by the vehicle's electronic fuel injection system until the numerical emissions standards are satisfied with just enough margin to “pass” the FTP and maintain “passing” levels for the “useful life” of the vehicle.
When the calibration for a particular family of vehicles is “tweaked” to pass the FTP, test results do not necessarily reflect the vehicular emissions which result from driving the same vehicle on the road even with the same environmental conditions and vehicle speed schedule. The emissions are dependent not only on the speeds, number of miles and grades driven, but also on the particular driver, familiarity with the course being driven, traffic conditions, etc.
It is important for responsible vehicle and engine manufacturers to know the actual real world emissions performance of vehicles and engines under various competing calibrations and designs so they have the opportunity to make environmental considerations one of the parameters by which they choose a final design or calibration. It is also important for emissions regulators to monitor the emissions performance of vehicles and engines from each of the manufacturers operating in the real-world. With today's sophisticated electronic engine controls and designs, test data is necessary to determine the effectiveness of the FTP in real-world test cycles, in helping maintain clean air, as well as for estimates of the emissions inventories. It is only by knowing the actual real-world emissions of vehicles that effective policy can be developed regulating those emissions.
To monitor the emissions performance of vehicles and other equipment in normal use, a user-friendly, portable, and easily transferable “in-use” emissions measurement system is needed. Ideally, installation of such a system would not require modification of the vehicle or other equipment to be tested. Further, the emissions measurements of any system must agree well with laboratory FTP testing when both systems are operated concurrently, over the same cycle.
Vehicular, on-board gas emission monitoring systems are disclosed in U.S. Pat. No. 5,099,680 issued to Fournier et al, U.S. Pat. No. 5,105,651 issued to Gutmann and U.S. Pat. No. 5,709,082 issued to Harris et al. However, none of these prior art on-board systems measures actual exhaust gas flow rate or provides an instrument module which can be easily transferred between vehicles.
U.S. Pat. No. 5,099,680 discloses an on-board system for analysis of a plurality of exhaust gas components (column 3, lines 45-47) and interfaces with the engine computer (column 3, lines 15-18). This prior art system contemplates the calculation of vehicle emissions in grams per mile, apparently based on vehicle speed and engine displacement, as described at column 4, lines 3-20.
U.S. Pat. No. 5,105,651 discloses an on-board system in the embodiment of FIG. 2. Carbon monoxide and hydrocarbon content of the exhaust gas is monitored (column 4, lines 28-30) and exhaust gas analytical data is correlated with vehicle operation as described at column 6, line 42 to column 7, line 23.
U.S. Pat. No. 5,639,957 notes the 30-50% error in calculation of emissions of gaseous pollutants due to the difference between theoretical and actual values for exhaust gas flow. This prior art reference proposes an improved calculation for determination of theoretical exhaust gas flow.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a mobile, emissions reporting system which is transferable between different mobile apparatus, which provides for a real-time determination of mass flow rates of various gaseous pollutants based on the actual exhaust gas flow rate and which requires no modifications to the mobile apparatus to be tested.
It is another object of the present invention to provide such an emissions testing system in which sensors required to come into contact with the exhaust gas are all incorporated into a module which may be detachably mounted on a mobile apparatus and readily transferred from one mobile apparatus to another.
It is a further object of the present invention to provide such a system with the capability for determination of mobile apparatus operating parameters and correlation of those operating parameters with pollutant mass flow rates in real time.
It is yet another object of the present invention to provide such a system inclusive of a global position system receiver for continuously monitoring location of the mobile apparatus and for correlating said pollutant mass flow rates with driving or running cycle or driving or running schedule.
In order to achieve the foregoing objects the present invention provides a mobile apparatus, on-board testing system, including a module designed to be detachably mounted on a mobile apparatus to be tested and support means for detachabl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real-time exhaust gas modular flowmeter and emissions... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real-time exhaust gas modular flowmeter and emissions..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time exhaust gas modular flowmeter and emissions... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2981702

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.