Radiopharmaceuticals for imaging infection and inflammation

Drug – bio-affecting and body treating compositions – Radionuclide or intended radionuclide containing; adjuvant... – In an organic compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S001690, C534S010000

Reexamination Certificate

active

06416733

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides novel radiopharmaceuticals useful for the diagnosis of infection and inflammation, reagents and kits useful for preparing the radiopharmaceuticals, methods of imaging sites of infection and/or inflammation in a patient, and methods of diagnosing diseases associated with infection or inflammation in patients in need of such diagnosis. The radiopharmaceuticals bind in vivo to the leukotriene B4 (LTB4) receptor on the surface of leukocytes which accumulate at the site of infection and inflammation. The reagents provided by this invention are also useful for the treatment of diseases associated with infection and inflammation.
BACKGROUND OF THE INVENTION
The rapid diagnosis of diseases associated with focal infection and inflammation is a currently unmet clinical need. Inflammation is the result of the detection of an abnormality in the body, such as infection, by leukocytes. Leukocytes become activated and gravitate toward the site of the abnormality. When the leukocytes become fully activated they degranulate and release proteolytic enzymes as well as chemoattractants resulting in a chemotactic gradient and as a consequence the recruitment of additional leukocytes. The result is a concentration of activated leukocytes at the site. This localization provides a means for diagnosing diseases associated with infection and inflammation through the use of leukocytes labeled with an externally detectable radioisotope and gamma scintigraphy.
Two approaches have been taken to utilize this mechanism for imaging infection and inflammation. The first involves isolating leukocytes from a patient, labeling the leukocytes with a radioisotope and then reinjecting the radiolabeled autologous leukocytes into the patient. This approach has several drawbacks including the effect of the labeling methodology on the biological activity of the leukocytes manifest as a diminished number of competent leukocytes, and the hazards and inconvenience of handling the patient's blood. The second approach involves injecting into the patient a radiopharmaceutical that binds to activated leukocytes in vivo.
An example of the in vivo labeling approach is the use of radiolabeled monoclonal antibodies or peptide that are directed against a leukocyte activation marker, as described in Morgan, Jr., U.S. Pat. No. 5,376,356. A leukocyte activation marker is an antigen on the surface of the leukocyte that is poorly expressed or not expressed at all until activation of the leukocyte. This approach suffers from the disadvantages associated with the use of many proteinaceous radiopharmaceuticals as diagnostics, namely, generally slow blood clearance which results in high background activity unless an inconveniently long period of time is allowed to pass between injection and imaging, and the possibility of an allergic reaction by the patient to a foreign protein.
It has been proposed that these problems can be overcome by using radiolabeled peptides that bind in vivo to surface receptors on activated leukocytes (Fischman et. al., Semin. Nucl. Med., 1994, 24, pp 154-168). The chemotactic peptide, fMLF, labeled with In-111 or Tc-99 m have been shown to accumulate at sites of infection in experimental animal models. However, the peptide fMLF is a potent agonist for the leukocytes and thus has limited clinical applicability in a diagnostic radiopharmaceutical. The limitations include the potential for serious deleterious effects to the patient, such as a severe drop in white blood cell count, resulting from the activation of the leukocytes upon injection of even small amounts of the potent agonist peptide.
Another alternative approach has been described by Rubin et. al. in U.S. Pat. No. 4,926,869 involving the use of a radiolabeled immunoglobulin or fragment thereof. The immunoglobulin accumulates at the site of infection or inflammation by a non-specific mechanism attributed to the leakage of labeled immunoglobulin from the circulation into the greatly expanded protein space at the site. However, this approach suffers from the same disadvantages associated with the use of a proteinaceous substance as described above.
Therefore, there remains a need for new radiopharmaceuticals for imaging infection and inflammation that have improved pharmacokinetics, especially faster blood clearance, and do not cause serious side-effects in patients.
Leukotriene B4 (LTB4) is synthesized from arachidonic acid by the action of 5-lipoxygenase and leukotriene A4 hydrolase. LTB4 is released by polymorphonuclear leukocytes (PMN), macrophages, mast cells, basophils and monocytes with each cell type having an LTB4 surface receptor. Endothelial cells, eosinophils and platelets do not generate LTB4. The binding of LTB4 to its surface receptor promotes chemotaxis in PMN's, macrophages and eosinophils. It also induces PMN aggregation, adherence of PMNs to vascular endothelium and PMN diapedesis.
LTB4 in conjunction with PMN, macrophages, mast cells, basophils and monocytes has been implicated in a variety of diseases which involve undesirable inflammatory responses in diverse tissues, including infection, tissue injury and transient ischemia. In the case of reperfusion injury and transplant rejection, LTB4 together with PMN, macrophages and mast cells have been causally demonstrated to play a major role in the inflammatory processes associated with these phenomena. In addition, LTB4 in conjunction with PMN, macrophages, mast cells, basophils plays a pivotal role in the development of inflammatory bowel disease. Colonic mucosal scrapings from inflammatory bowel disease patients generate 6 fold more LTB4 than from corresponding normal subjects. Thus a radiopharmaceutical which binds to the LTB4 receptor at sub-therapeutic levels should be able to rapidly detect inflammatory disease processes throughout the body.
In the present invention it has been found that radiopharmaceuticals capable of binding to the LTB4 receptor are useful for imaging sites of infection and inflammation.
SUMMARY OF THE INVENTION
The present invention provides novel radiopharmaceuticals useful for the diagnosis of infection and inflammation, reagents and kits useful for preparing the radiopharmaceuticals, methods of imaging sites of infection and/or inflammation in a patient, and methods of diagnosing diseases associated with infection or inflammation in patients in need of such diagnosis. The radiopharmaceuticals bind in vivo to the leukotriene B4 (LTB4) receptor on the surface of leukocytes which accumulate at the site of infection and inflammation. The reagents of this invention are also useful in the treatment of diseases associated with infection and inflammation.
The radiopharmaceuticals of the present invention are small molecules and so do not suffer from the disadvantages associated with radiolabeled proteins or antibodies. As antagonists, the radiopharmaceuticals have significantly diminished risk of producing side-effects. The radiopharmaceuticals of the present invention have utility in the rapid detection of inflammatory or infectious diseases such as inflammatory bowel, fever of unknown origin, reperfusion injury and transplant rejection. The reagents of this invention are useful in the treatment of diseases associated with infection and inflammation.
DETAILED DESCRIPTION OF THE INVENTION
[1] Thus, in a first embodiment, the present invention provides a novel reagent capable of direct transformation into a radiopharmaceutical having a binding affinity for the LTB4 receptor of less than 1000 nM.
[2] In a preferred embodiment, the reagent is of the formula:
W
e
—X—L
n
—Y—L
n′
—C
h
, W
e
—X—L
n
(L
n′
—C
h
)—Y, or Z—L
n′
—C
h
,
wherein,
W
e
is selected from the group:
 wherein,
A
1
is N, C—OH, or CH;
A
2
and A
3
are independently N or CH;
A
4
is N or CR
3
;
A
5
is O or S;
A
6
is O, CH
2
or S;
A
7
is C—OH, N, NH, O or S;
A
8
is NH, CH
2
, O, S, N, or CH;
A
9
is N or CH;
a and b indicate the alternative positions of a double bond;
R
1
is selected from the g

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiopharmaceuticals for imaging infection and inflammation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiopharmaceuticals for imaging infection and inflammation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiopharmaceuticals for imaging infection and inflammation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2825057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.