Purification of group IVb metal halides

Chemistry of inorganic compounds – Halogen or compound thereof – Binary compound containing metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S24000R, C423S077000, C423S076000

Reexamination Certificate

active

06770254

ABSTRACT:

BACKGROUND OF THE INVENTION
Group IVb metal tetrahalides find use in the manufacture of integrated circuits and heavy metal glasses for fiber optics. In the manufacture of the integrated circuits and glasses, the industry desires a high purity Group IVb metal substantially free of trace elements. However, in the manufacture of Group IVb metal tetrahalides, e.g., titanium tetrahalide, trace levels of zirconium, hafnium and possibly Group Vb metals, such as niobium and tantalum may be present. It is desired that these metals be reduced in concentration from the Group IVb metal halide.
One of the commercially desirable products for use in producing integrated circuits is titanium tetrachloride. Titanium tetrachloride is a reactive liquid, with a normal boiling point of 136° C., the vapor of which finds use in processes for the deposition of titanium nitride or titanium silicide films in large scale integrated circuits by chemical vapor processes, CVD. The overall performance of the circuit can be very sensitive to impurities that are present in the precursor material and which is deposited. Titanium purity is of high importance to the industry, with desired purities of 99.99999+% with respect to primarily metallic and metalloidal impurities.
Commercially available titanium tetrachloride contains trace levels of zirconium with typical levels of 500 ppb (part per billion by weight, hereinafter). The semiconductor industry users of titanium tetrachloride desire that the zirconium levels be less than 1 ppb. Separation of Group IVb metal halides, such as zirconium tetrachloride, a common impurity, from titanium tetrachloride is difficult. Conventionally, distillation has been used as a means for effecting purification. However, multiple distillation passes, or use of multiple plate distillation processes, often are required to reach the acceptable levels, e.g., the 1 ppb level contaminant metal.
Most recently, the deposition of thin films of zirconium and hafnium oxides by atomic layer deposition from their respective halides have been recently described. These thin film precursors also require high purity sources of zirconium and hafnium tetrahalides.
The following patents describe methods for the purification of tetrahalides of Group IVb metals and their use in semiconductor and glass applications.
U.S. Pat. No. 4,578,252 discloses a process for the removal of iron impurities in zirconium and hafnium tetrafluorides which are used in preparing heavy-metal fluoride glasses. The process for producing ultra-high purity gases comprises the steps of applying an electromotive force to the metal fluorides during distillation or sublimation. Iron cations are converted to non-volatile iron metal and thereby removed during distillation.
U.S. Pat. No. 6,090,709 discloses methods for effecting chemical vapor deposition of titanium based films, e.g., titanium metal, titanium nitride and titanium silicide from titanium tetrachloride and other tetrahalides. Deposition of these films is effected in a chamber wherein the substrate is contacted with a titanium halide, a gas selected from ammonia, and hydrazine and a second gas selected from hydrogen, nitrogen argon or xenon.
U.S. Pat. No. 4,965,055 discloses a process for the ultra purification of metal halides, e.g., zirconium and hafnium chlorides. The prior art in this patent employed combinations of sublimation and distillation to effect purification. The patentees suggest a dissolving the metal halide in the presence of a complexing agent with complexes with the halide to form a soluble anionic or cationic complex. The metal impurities form a complex having a charge opposite the metal halide complex thereby allowing for separation in an ion exchange column.
U.S. Pat. No. 4,356,160 discloses a process for reducing titanium tetrachloride to titanium trichloride for use in olefin polymerization. The process comprises reacting the titanium tetrachloride with hydrogen in the presence of an ether, e.g., diethyl ether, and a Group 1B, IIB, IVB and VIII metal;
BRIEF SUMMARY OF THE INVENTION
This invention relates to an improved process for removing trace levels of Group IVb and Vb metals, that will be referred to as the “contaminants” from a Group IVb metal tetrahalide, and particularly, for the reduction of zirconium and hafnium from titanium tetrahalide. The process is particularly suited for generating a high purity Group IVb metal tetrahalide. The improvement in the process for reducing trace levels of a contaminant Group IVb and Group Vb metal comprises the steps of (a) contacting said Group IVb metal tetrahalide containing trace levels of a Group IVb metal contaminant or a Group Vb metal contaminant or both, with a sufficient amount of a hydride selected from one of the Group IVb metals under conditions for converting said volatile Group IVb and Group Vb contaminants to a lower volatility compound that enhances the removal of those metal contaminants by distillation or sublimation; (b) separating the Group IVb metal tetrahalide from said lower volatility compound by distillation, and (c) recovering the resulting Group IVb metal tetrahalide as an overhead fraction.
There are several advantages that can be achieved by this process and these include:
an ability to reduce the level of contaminant zirconium and hafnium or both from a titanium tetrachloride feedstock to very low levels thus rendering the resulting ultra high purity titanium tetrachloride suited for titanium film formation by chemical vapor deposition and other means employed in integrated circuit production;
an ability to eliminate heavy metal impurities from a Group IVb metal tetrahalide feedstock without substantial loss of product;
an ability to remove trace metal contaminants in a one-pass operation; and,
an ability to remove heavy metal halides from titanium tetrachloride in conventional equipment.
DETAILED DESCRIPTION OF THE INVENTION
Removal or reduction of trace levels of Group IVb metal and Group Vb metal contaminants from Group IVb metal tetrahalides, and particularly for the reduction of zirconium and hafnium tetrahalide from titanium tetrahalide, is highly desired. Often these Group IVb metals are also contaminated with trace levels of contaminant Group Vb metals such as niobium and tantalum and these metals can also be converted to compounds of lower volatility. Set forth is a description of a process for reducing trace levels of contaminant metals from a Group IVb metal tetrahalide feedstock.
The initial step of the process comprises (a) contacting said Group IVb metal tetrahalide feedstock containing trace Group IVb or Group Vb contaminants with a sufficient amount of a Group IVb metal hydride, e.g., titanium hydride and zirconium hydride, under conditions for converting said Group IVb metal or Group Vb metal contaminants to lower volatility species that that are more effectively removed in a distillation process. Contacting temperatures typically range from 50 to 150° C. The preferred Group IVb tetrahalides to be reduced in contaminants are the chlorides, bromides and iodides and, most preferably the chlorides of titanium.
The Group IVb metal employed in the hydride might be any of the Group IVb homoleptic hydrides but selection of the metal that is the same as that of the tetrahalide being purified precludes the addition of a potentially contaminating metal source. A number of other simple hydride sources, i.e., LiH, NaH, KH, LiAlH
4
, may be used. NbH3, might also be expected to reduce the Group IVb and Vb metal contaminants, but it may result in adding a non-Group IVb material. In some cases it may be acceptable to add the hydride of another Group IV or Group V metal that is already present as a contaminant if it results in more efficacious removal of contaminants. It is even conceivable that other hydrides and possibly other forms of the Group IVb metal may be used, the addition of a different metal can contribute to contamination. Not only can the metal, e.g., lithium from its hydride add to contamination, other forms than the hydride of the metal, e.g., an org

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Purification of group IVb metal halides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Purification of group IVb metal halides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Purification of group IVb metal halides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3312497

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.