Protocol adapter for in-vehicle networks

Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral adapting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S062000, C701S024000, C701S029000

Reexamination Certificate

active

06772248

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the invention pertains to in-vehicle networks for diagnostics, analysis and monitoring. The networks integrate with PC gateways for data acquisition, computer-based measurement, and automation systems with in-vehicle communication. However, in the past, when hardware components were upgraded, existing software could become non-compatible with the upgraded hardware. Manufacturers of various tools attempted to remedy these compatibility problems by using a box to talk to multiple data links. This was not very satisfactory and a better solution to this problem was needed.
SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide an improved protocol adapter for in-vehicle use.
It is also an object of this invention to provide such an improved protocol adapter which has reflashing for upgrading of firmware.
It is a further object of this invention to provide such an improved protocol adapter which has visual indicators for indicating the program being executed by the protocol adapter.
It is a further object of this invention to provide such an improved protocol adapter which has LED's for visual indicators.
It is a further object of this invention to provide such an improved protocol adapter which has a pass-through mode to emulate other protocol adapters.
It is a further object of this invention to provide such pass through mode which has a voltage translator.
It is a further object of this invention to provide such an improved protocol adapter which connects circuitry and programs wirelessly.
The protocol adapter of the invention is a diagnostic tool that can bridge a lap-top or bench-top or other computer to a vehicle network. It is advantageous for research and development applications, end of line testing, and design and production applications such as quality control, life-cycle testing, and burn-in applications.
The protocol adapter of the invention solves the above-identified problem by operating as a translator box that works with a variety of software packages. Thus, the invention is operable with existing diagnostic software packages.
A special pass-through mode allows users to continue utilizing yesterday's in-house software, while communicating with today's hardware. Older software packages such as RP1202 and RP1210 can still be employed. This feature allows users to replace aging hardware with an interface that can support existing software. Consequently, users can replace old hardware with the invention and yet maintain compatibility with their original software.
The earlier protocol adapter supported SAE J1708, SAER J1939, and Controller-Area (CAN) networks. The earlier adapter has a voltage converter mode that supports RS-232-to-RS-485 voltage conversion. The normal RS-232 port allows direct access to the J1708/ RS-485 link. The improved protocol adapter supports the listed prior protocol adapter features, including a library (DLL/VxD for Windows CVI) and on-board flash for field upgrades. The improved protocol adapter also employs a pass-through mode which supports communication with “old” software packages (e.g. RP1201 and RP1210).
The improved protocol adapter can be used wirelessly to perform the following functions: ECU fault code interrogation; communication with a remote network; vehicle maintenance status checks or trip/performance data downloads; and improved asset control, logistics and inventory management, diagnostic support, and maintenance/scheduling.
An ISA version of the improved protocol adapter is a half slot card that supports CAN (J1939 and DeviceNet), SAE J1850, and GM UART protocols.
The invention has reflashing that allows the protocol adapter to be updated with new firmware in the field. This is accomplished by U5, U1, U8 and U4. U5, (micro) processes a command sent to the protocol adapter by the host. It then copies the reflash instructions set (loader program) into RAM (U) and then transfers control to that program (loader). The loader program responds to the commands from the host which allows the host computer to then clear and reprogram the Flash (U4). Once the reproming is complete control is passed back to the flash program.
The invention has status lights that allow the operator to determine what program is being executed by protocol adapter embedded micro. U5 (micro) will flash the LEDs on the I/O board in a predefined manner at power up to indicate what version of firmware is being executed.
The invention has a pass through feature (voltage translator)/smart mode that allows this version of the protocol adapter to emulate older boxes. In this mode of operation, the U5 (micro) delivers data directly from the J1708 Transceiver (UX) to the RS232 transceiver (UX) and monitors the data to provide J1708 defined timing signals on any or all of the RS232 hardware handshake lines.
The invention has RP1202 and RP1210, J1708 and J1939, J1939 Transport Layer, Real Time Clock, Standard COMM port connection, 7-32 Volt supply and is CE compliant.
Advantages of the invention are as follows. Bank switching in that the memory is swapped in and out of the processor's memory map to allow multiple programs to run. File upgrade capability in that non-volatile memory can be reprogrammed in the field to allow new software features to added in the field. Multiple date links can be supported at the same time. Firmware and hardware version numbers are available to the host to allow the host to determine current capabilities. The manufacturer's name is embedded in flash to allow value added retailers (VAR's) to embed their own names. Proprietary software may be burned into flash to allow the locking of VAR software. The device is capable of receiving and transmitting asynchronously of host processor to allow broadcast on transmit and filter on receive. The device has a programmable multi-function to support datalink communications. The device also has a built in remote access memory to allow the host to consolidate message date, that is a “scratch pad”.
For a more complete understanding of the present invention, reference is made to the following detailed description when read with in conjunction with the accompanying drawings wherein like reference characters refer to like elements throughout the several views, in which:


REFERENCES:
patent: 5541840 (1996-07-01), Gurne et al.
patent: 5870573 (1999-02-01), Johnson
patent: 5896569 (1999-04-01), Butler et al.
patent: 6122684 (2000-09-01), Sakura
patent: 6195359 (2001-02-01), Eng et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protocol adapter for in-vehicle networks does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protocol adapter for in-vehicle networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protocol adapter for in-vehicle networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356975

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.