Proteosome influenza vaccine

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Separation or purification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S204100, C424S206100, C424S234100, C424S249100, C530S300000, C530S350000, C530S412000

Reexamination Certificate

active

06743900

ABSTRACT:

FIELD OF THE INVENTION
The invention is in the field of vaccine preparation. New and improved techniques are illustrated for the preparation of a vaccine against influenza, which techniques are applicable to protein-based vaccines generally.
BACKGROUND OF THE INVENTION
Flue Incidence
Vaccination is the most effective way of reducing the high morbidity and mortality rates as well as diminishing the enormous social and economic impact associated with influenza infection. Although detergent-containing split influenza vaccines are available, the level of vaccination compliance especially in the high-risk groups such as infants and the elderly is low. For example, it is estimated that less than half of the eligible population over the age of 65 actually receives the vaccine. In addition, despite being 70-90% effective in inducing immunity in healthy adults, the current injectable influenza vaccines are poorly immunogenic as a single dose in infants and the geriatric population. Seroconversion rates as low as 20-50% have been reported amongst the elderly. This reduced response in the elderly is believed due to a decline in the Type 1 T cell response, including cytotoxic T lymphocyte activity in this age group. The combination of reduced compliance and poor immunogenicity ensures that large sectors of the general population remain at high risk of infection and complications caused by influenza. Numerous efforts to enhance the immunogenicity of injectable influenza subunit vaccines by co-administering them with adjuvants have proved unsuccessful due to unacceptable rates of local reactogenicity following immunization and the inability to reproduce the strong immunostimulatory effects seen in animal models in humans.
Advantages of Nasal Vaccines
Since influenza infections are restricted to the upper and lower respiratory tracts, nasally-delivered influenza vaccines offer a more benign approach to vaccination that should increase immunization compliance in all ages of the population. Furthermore, immunization by the nasal route may be more effective compared with intramuscular injection because the production of local secretory IgA in the upper respiratory tract can protect against influenza infection, while injectable influenza vaccines are inefficient at inducing mucosal IgA. Influenza specific secretory IgA shows a broader cross-reactivity for variant strains of virus and thus may offer a greater degree of protection against mutant influenza viruses. In particular, nasal flu vaccines may be more effective in the elderly since, unlike the systemic immune system, mucosal immune responses do not deteriorate with age. Nasal flu vaccines that also stimulate systemic immune responses may protect the lower respiratory tract (lungs) due to transudation of antibodies from the serum. In addition, influenza-specific cytotoxic T cells (CTL) in nasal associated lymphoid tissue can contribute to recovery from infection.
Live attenuated cold adapted (CAV) influenza vaccines conventionally have been used via the nasal route in humans. These influenza strains are genetic reassortants combining the HA and NA genes of the current strains of flu virus with the 6 genes encoding the other internal and structural proteins from an influenza donor virus adapted to grow at lower temperatures (25° C.) thereby allowing only minimal replication in the nasopharyngal respiratory tract. These vaccines have the advantage of inducing protective immune responses similar to those elicited by natural infection with influenza, including induction of secretory IgA in the nasal washes, interferon gamma production in restimulated PMNC's and activation of CTL specific for internal viral proteins that may broaden the cross-reactivity against viruses within the same sub-type. CAV influenza vaccines are close to commercialization and have been demonstrated to be well-tolerated and immunogenic in children and healthy adults. In recent studies in healthy children, one or two doses of CAV flu vaccine have been shown to induce equivalent systemic antibody as injectable split flu vaccines. The ability of a single dose of CAV to induce >80% protection in seronegative children is an advantage over injectable split vaccines that require two immunizations to achieve similar protection in this age group. While pre-existing circulating antibodies in healthy adults and the elderly prevent efficient seroconversion in these age groups (see below), CAV's have been demonstrated to significantly reduce the number of febrile illnesses, days lost at work and visits to healthcare providers compared with placebo. In the elderly, CAV's in combination with an injectable split subunit vaccine significantly reduced laboratory documented influenza compared to placebo.
Despite the benefits of described above CAV vaccines for influenza have a number of drawbacks: healthy adults and the elderly who have been previously exposed to influenza viruses respond poorly to CAV vaccines and often do not reach the levels of serum hemagglutination inhibition (HAI) activity that correlate with protection. This is particularly significant for the elderly who are amongst the highest risk group and currently the only group where global vaccination is advised. In addition, due to the potential problems with reversion to wild-type stains and/or recombination with circulating strains, CAV's are not recommended for use in immunosuppressed or pregnant women. Despite 20 years of clinical evaluation of CAV influenza vaccines licensing has been delayed due to production and quality control issues.
In order to circumvent the potential safety concerns with CAV influenza vaccines, there are currently attempts to develop nasal inactivated “split” influenza vaccines (ISIV). Inactivated split influenza vaccines contain purified influenza hemagglutinin (HA). Inactivated split influenza vaccines given alone or with various particulate delivery vehicles or enterotoxin-based adjuvants have induced influenza specific mucosal and systemic immune responses in animals and humans.
Nasal Formulation of ISIV
At doses equivalent to those given via the injectable route, nasal ISIV containing antigen alone reproducibly induce significantly higher levels of nasal IgA in animals and in limited studies in humans. However, two or more doses of nasal ISIV at higher amounts of HA are required to induce levels of serum HAI equivalent to injectable ISIV which make such vaccines less viable commercially.
Enterotoxin Addition
Increased influenza specific mucosal and serum immune responses can be achieved in mice by administering ISIV nasally with enterotoxins such as cholera toxin B subunit (CTB) Tamura, et al.,
J. Immunol
. (1992) 149:981-988 (which contained a significant amount of active cholera toxin even if referred to as CTB, since a recombinant source of CTB was not used in these studies) and recombinant heat-labile toxin from
E. coli
(rLT), Barchfield, et al.,
Vaccine
(1999) 17:695-704.
In mice these enterotoxins are powerful mucosal adjuvants that are capable of inducing both enhanced secretory IgA and serum immune responses against associated antigens including inactivated split influenza vaccine. Recombinant LT was also shown to enhance the local and systemic HA specific response against ISIV in humans (Hashigucci, et al.,
Vaccine
(1996) 14:113-119). However, the evaluation of enterotoxin-based adjuvants nasally in humans has been halted by the US FDA due to the results from pre-clinical toxicity studies in mice, showing that the enterotoxins reach the olfactory bulb region of the CNS and induce strong inflammatory reactions in that tissue following nasal administration. This finding has significantly hampered development of flu vaccines with these adjuvants (McGhee, et al.,
J. Immunol
. (2000) 165:4778-4782) and would likely preclude the use of this type of adjuvant in human vaccines for the foreseeable future.
Lipid Based Formulations
Particulate species such as the virosome (a liposome formulation with influenza antigens) have also been tested in animal studies an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Proteosome influenza vaccine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Proteosome influenza vaccine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proteosome influenza vaccine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3359403

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.