Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Protein – amino acid – or yeast containing
Reexamination Certificate
2001-02-06
2002-03-12
Weier, Anthony J. (Department: 1761)
Food or edible material: processes, compositions, and products
Products per se, or processes of preparing or treating...
Protein, amino acid, or yeast containing
C426S801000, C426S580000, C426S334000, C426S330200
Reexamination Certificate
active
06355297
ABSTRACT:
The invention relates to the use of a protein component for dietetic food products based on conventional proteins used for the production of foods for the treatment of patients suffering from a disturbed gastrointestinal motility and of reflux-predisposed patients, and of a food product containing said proteins.
A delayed stomach emptying after a meal is a main symptom of patients suffering from a disturbed gastrointestinal motility. One of the most important consequences of a delayed stomach emptying is the return transportation of stomach contents into the oesophagus, the so-called gastro-oesophageal reflux (“reflux” in the following). The consequences are, for one, damages of the oesophageal mucous membrane caused by gastric acid and the enzymes of the gastric juice, which, with frequent occurrence, leads to an inflammatory alteration of the oesophagus, the so-called gastro-oesophageal reflux disease. Another consequence may be emesis. The latter would cause the danger of an aspiration of stomach contents into the lungs which is a critical complication especially for seriously ill patients.
The causes for reflux are multiform. Often, during early infancy, they are an expression of an immaturity of the development of the motoric co-ordination of the gastrointestinal tract. In general, with all serious diseases entailing the disturbances of the state of consciousness or a drop in the blood pressure, a reflux might occur. This is also the case when the state of consciousness is influenced by medicines, such as, for example, during narcosis. Another large group in which reflux is observed, is patients with a disturbed cerebral function.
Apart from the medical influence on the gastrointestinal motility in particular by means of medicines, which exercises an influence on the autonomic nervous system, two approaches are traditionally pursued with dietetic treatment. The most usual approach is the thickening of the food with galactoglucomannans (taken as a rule from carob beans). This dietetic principle consists in that the thickening of the food practically “mechanically” prevents the stomach contents from flowing back into the oesophagus. The other approach, in particular applied on patients facing the risk of aspiration, consists of making the food extremely fluid so as to allow for a rapid passage through the stomach.
Both approaches, however, are not the best possible. For seriously ill adult patients, it is discussed that fat resorption might possibly be disturbed by the thickening of the food with galactoglucomannans. The disadvantage of extremely liquid food resides in that they are susceptible to offering proteins only in a hydrolyzed form or in very low concentrations. Thus, a sufficient protein supply may not be obtained with such food.
The modifying of proteins and, for example, at least partially to dephosphorylate them so as to decelerate the digestion process, is also already known (WO 97/05785).
It is the task of the present invention to point out a novel approach as to how adult and adolescent patients, as well as babies and small children suffering from a disturbed gastrointestinal motility and reflux-predisposed patients can be nourished in such a way that a sufficient protein supply is ensured and at the same time to allow the food taken in to pass down to the stomach in a rapid way and without running the risk of a reflux.
This task is solved by the teaching of the present claims.
Conventional proteins or protein sources, which are usually used for the production of foods or food products serve as the basic material for the inventive protein component, which may likewise be designated as protein composition or protein mixture. Thereby, in particular natural raw materials of animal or vegetable origin are used. The proteins used may thereby be of any optional type.
At least 20 wt-% and hence 20 to 100 wt-% of the proteins used for the production of this protein component are those comprising at least one phosphate residue, which is covalently bound to the corresponding protein. In an advantageous manner, cow milk proteins are thereby concerned, and in particular the caseins thereof. The remaining proteins and hence 0 to 80 wt-% are those, which “right from the very beginning” and hence by nature do not comprise covalently bound phosphate group/s.
According to the present invention, 50 to 100 wt-% of those proteins comprising at least one covalently bound phosphate residue, are then subjected to a dephosphorylating reaction known per se, during which 20 to 100% of the covalently bound phosphate residues are split up. In other words, the covalently bound phosphate content of those proteins, which were subjected to a dephosphorylating reaction, are reduced by 20 to 100%, preferably by 20 to 85%.
The protein component used according to the present invention is therewith composed of
a) 20 to 100 wt-% of proteins, which originally comprise at least one phosphate residue, and of which
i) 50 to 100 wt-% were subjected to a dephosphorylating reaction during which 20 to 100% of said phosphate residues were removed, and
ii) 0 to 50 wt-% were not subjected to such a dephosphorylating reaction, and
b) 0 to 80 wt-% of proteins, which are free of a phosphate residue from the very beginning.
The weight ratio between proteins a) and proteins b) is thereby preferably 30:70 to 50:50 and in particular about 40:60.
When a range is mentioned within the scope of the present documents such as for example the above-mentioned ranges of 20 to 100 wt-%, 50 to 100 wt-%, 0 to 50 wt-% and 0 to 20 wt-%, as well as with the described dephosphorylation degrees of 20 to 100% or 20 to 85%, all intermediate single values, in particular all integral single values, and even all smaller ranges comprised thereof, are therewith disclosed. A part of these disclosed single values (in % or wt-%) are for example 1, 2, 3, 4, 5 . . . , 9 . . . , 13 . . . , 17, 18 . . . , 21, 22, 23, 24, 25, 26 . . . , 31, 32, 33 . . . , 38, 39,40, 41 . . . , 48, 49, 50, 51, 52, 53, 54, 55 . . . , 68, 69, 70, 71 . . . , 78 . . . , 83, 84 . . . , 88, 89, 90, 91 . . . , 95, 96, 97, 98 and 99. Comprised ranges are for example 20 to 40, 30 to 50, 40 to 85, 45 to 75, 50 to 85, 40 to 75, 50 to 85, 55 to 90, etc. These aforementioned ranges are given as a mere example.
The protein component used according to the present invention may be administered as such to a patient and hence as the sole component or protein component, for example in the form of tube nutrition. In an advantageous way, however, the protein component according to the present invention will further be mixed with the other usual components of a nutrition, and in particular with an instant food product, and is then given to the patient in a form incorporated in a nutrition. The protein component according to the present invention can thereby either constitute the only protein component of such a food or it can also be mixed with further protein components.
The protein component used according to the present invention can thereby be used in such a form that, apart from dephosphorylation, it is not subjected to any further treatment.
However, the protein component can also be subjected to a further treatment known per se prior or subsequent to dephosphorylation.
The invention is based on the surprising finding that by means of a gradual enzymatic dephosphorylation of the protein source used with a dephosphorylation degree of 20 up to a maximum of 100%, and in particular of 20 to 85% and, if necessary, by mixing these dephosphorylated proteins with non-dephosphorylated proteins comprising phosphate residues and/or with proteins comprising no phosphate residues or phosphate groups by nature, stomach emptying can be selectively controlled. A correspondingly faster emptying of the stomach will, in turn, considerably reduce reflux. By means of the selective control of the degree of the dephosphorylation, one has moreover the possibility to specifically respond to various disturbances of the gastrointestinal motility.
For the production of baby foods/infant formulae and tube
Böhm Günther
Georgi Gilda
Sawatzki Günther
Bacon & Thomas
N.V. Nutricia
Weier Anthony J.
LandOfFree
Protein component for dietetic food does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Protein component for dietetic food, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protein component for dietetic food will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2889802