Production method for SOI wafer and SOI wafer

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S349000

Reexamination Certificate

active

06784494

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method for manufacturing SOI wafer and thus-manufactured SOI wafer.
BACKGROUND OF THE INVENTION
There has been a general trend of handling high-frequency signal of several hundred MHz or above in recent mobile communication typically using cellular telephones, which strongly demands semiconductor devices with excellent high-frequency characteristics. Semiconductor devices such as CMOS-IC and high-voltage IC typically employ so-called SOI wafer comprising a silicon single crystal substrate (also referred to as “base wafer” hereinafter), a silicon oxide layer (buried oxide film) formed thereon, and another silicon single crystal layer stacked further thereon as an SOI (silicon-on-insulator) layer. For the purpose of fabricating semiconductor devices for high-frequency use on the SOI wafer, it is necessary for the base wafer to be composed of a high-resistivity silicon single crystal in order to reduce high frequency loss.
One representative process for manufacturing the SOI wafer relates to bonding process. According to the bonding process, a first silicon single crystal substrate (also referred to as “bond wafer” hereinafter), which provides an SOI layer affording device formation area, and a second silicon single crystal substrate which serves as a base wafer are bonded so as to locate a silicon oxide film in between, and the bond wafer is then reduced in the thickness thereof so as to be thinned to a film having a predetermined thickness, to thereby convert the bond wafer to the SOI layer.
In the above-described bonding process, a bonding interface between the base wafer and the bond wafer may sometimes catch foreign matters such as particles. Such foreign matters accidentally residing on the bonding interface may induce lattice defect such as void, degraded wafer characteristics typically due to diffusion of impurities, and degraded bonding strength between both substrates. The substrates are thus bonded in a clean room (or in a clean area) so as to avoid the contamination of foreign matters into the bonding interface. In the manufacture of SoI wafer by the bonding process, it is a general practice to form the silicon oxide film only on the surface of the bond wafer, and then bond the base wafer with the bond wafer so as to locate the silicon oxide film in between.
Another known problem resides in that the clean room, which is a site of the wafer bonding, usually contains in the atmosphere thereof boron which is derived from the air filter, and which boron can be incorporated as an impurity into the bonding interface. Boron thus incorporated into the bonding interface diffuses during high-temperature annealing (bonding annealing) for raising bonding strength or during annealing for forming devices. In this point of view, the foregoing bonding process in which the silicon oxide film is formed only on the bond wafer hardly affects the devices since the boron diffusion into the SOI layer (device forming area) is blocked by the silicon oxide film. This is one reason why the foregoing bonding process in which the bond wafer, only on which the silicon oxide film is formed, is bonded with the base wafer is widely accepted. Whereas the bonding interface between the base wafer and silicon oxide film still suffers from adsorption of boron derived from the air filter, so that the boron diffusion into the base wafer is still inevitable during the foregoing bond-annealing.
The above-described boron diffusion into the base wafer has not attracted much attention so far as a silicon single crystal substrate having a normal-to-low resistivity is used as the base wafer. The problem of degradation of high-frequency characteristics however arises in the SOI wafer for high-frequency use, since the base wafer has a resistivity of as high as hundreds to thousands &OHgr;·cm, and the resistivity of an interfacial portion of the base wafer several micrometers deep from the interface with the silicon oxide film may considerably be lowered due to the boron diffusion.
One solution for the foregoing problem is disclosed in Unexamined Japanese Patent Publication No. 2000-100676, in which SOI wafer is manufactured by properly selecting types of the air filter used for introducing air into a clean room to thereby control the amounts of boron as a p-type impurity together with n-type impurity in the bonding atmosphere. The methods disclosed in the patent are such that:
1. using a boron-free filter system which comprises a PTFE filter and a boron-adsorptive chemical filter irrespective of conductivity type of the base wafer. Using the boron-free filter is beneficial to suppress boron-induced degradation in resistivity of the base wafer particularly for the case that the base wafer comprises a p-type silicon single crystal substrate having a high resistivity; and
2. using a boron-releasable HEPA filter when the base wafer comprises an n-type silicon single crystal substrate having a high resistivity. Degradation of the resistivity is avoidable even if boron is adsorbed since the adsorbed boron is compensated by the n-type dopant contained in the n-type silicon single crystal substrate.
The foregoing method
1
is however disadvantageous in that the boron-free filter system is expensive and is less economical. While the method
2
is applicable to the case the n-type base wafer is used, it is of course inapplicable to the case the p-type base wafer is used. The paragraph 0150 of the foregoing patent publication also describes difficulty in use of the HEPA filter for the high-resistivity, p-type wafer. It is also anticipated that even the resistivity of the n-type wafer may degrade unless concentrations of the n-type dopant and the filter-derived adsorbed boron are properly balanced.
SUMMARY OF THE INVENTION
An object of the present invention therefore resides in providing a method for manufacturing SOI wafer less causative of degradation of resistivity of the base wafer even when a high-resistivity silicon single crystal substrate of either conductivity type is used as the base wafer and is bonded in a boron-containing atmosphere; and also in providing an SOI wafer producible by such method, capable of retaining high resistivity of the base wafer by localizing boron incorporated during the bonding, capable of retaining desirable electrical characteristics of the SOI layer, and excellent in high-frequency characteristics.
To solve the foregoing problem, the method for manufacturing SOI wafer of the present invention comprises a bonding step including a process of bringing the main surfaces of a first silicon single crystal substrate and a second silicon single crystal substrate, each of such main surfaces having previously formed thereon a silicon oxide film, into close contact so as to locate such silicon oxide films in between; and a thickness reducing step for reducing the thickness of such first silicon single crystal substrate to thereby convert it into an SOI layer, wherein such second silicon single crystal substrate comprises a silicon single crystal substrate having a bulk resistivity of 100 &OHgr;·cm or above, and such process of bringing the main surfaces into close contact in such bonding step is proceeded in an atmosphere of a clean air supplied through a boron-releasable filter.
The present invention employs a silicon single crystal substrate having a bulk resistivity of 100 &OHgr;·cm or above as the second silicon single crystal substrate (corresponded to the base wafer), and dare employs, in order to bring such substrate into close contact, an atmosphere containing a high concentration of boron derived from the air filter, which is usually found in ordinary clean rooms. The atmosphere is composed of a clean air supplied through a boron-releasable filter (which is exemplified by HEPA filters disclosed in Unexamined Japanese Patent Publications Nos. 10-165730 and 8-24551). In the present invention, the silicon oxide film is respectively formed on both of the second silicon single crystal substrate and the first silicon single crystal substr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production method for SOI wafer and SOI wafer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production method for SOI wafer and SOI wafer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production method for SOI wafer and SOI wafer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338185

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.