Processes and systems for secured information exchange using...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Protection at a particular protocol layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06487664

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and devices for the safe and secure operation of host information systems which must exchange information with other information systems and devices, such as in cyberspace and, where such external systems may be corrupted in some manner, utilizing system architecture and data signal transformations as opposed to conventional software based firewalls to receive and convert or reformat incoming information signals from the external systems and thereafter extracting and supplying only non corrupted information signals to the host systems. The invention also provides for screening of outgoing information signals from the host systems to prevent unauthorized information exchange and for permitting secure updating of host systems files with information before updated files are returned to the host systems.
2. Description of the Prior Art
The field of information-system security (InfoSec) technology and practice to date has focused on controlling human user access to computer system resources, and preventing hostile, clandestine computer programs, such as computer viruses, from corrupting a computer system. The advent of the Internet and personal computers brought new challenges to the InfoSec field, particularly because in networks, other machines, not human users, were the entities that primarily accessed a computer system. Old, pre-network, password usage and similar software authentication methods only offered a modicum of security control at “authorized user” entry points of a network. Intruders could bypass these methods as they do in today's Internet and tap or hack (i.e. the term hackers) into the communications segment of a computer network and launch any form of mischief or disruption that the target network would allow. This is the core of today's Internet security problem, wherein intruders can disrupt nearly all forms of Internet activity, from disabling web sites and compromising message traffic, to falsifying identity. The conventional InfoSec problems of unauthorized user access, incorrect operation, and system malfunction remain, in addition to today's network oriented security problems.
Various schemes of varying degrees of complexity and convolution have been devised to provide needed security. Examples of two of the latest of such schemes are U.S. Pat. Nos. 5,623,601 to Vu, and 5,632,011 to Landfield, et al. The methods taught are implemented as software computer programs, which operate with or as a standard operating system software package. Assumed in the methods are the correct implementation and operation of these software packages, and the operating system (i.e. control software) with which it must operate. Here, “correct operation” also includes InfoSec correctness which means no compromise to a hosting system is precipitated by the operation of such software. Proving or verifying such assertions as software correctness, or software operational integrity remains a major barrier in InfoSec technology, as well as in computer science and engineering in general. Software verification is a formidable undertaking. Finally, software (i.e. computer programs) is vulnerable to compromise by other computer programs, which may include viruses. Software attack and corruption, whether e-mail packages, protocol modules, operating systems, macro services such as OPEN commands, etc. is the realm of the system
etwork intruder (the Hacker). The ideal InfoSec tool should not be software dependant.
Today's InfoSec tools such as the above cited references implement, in software, a type of gateway function. The term firewall is often used. A gateway is a computer that connects two different networks together. A firewall is a gateway with the additional constraints and properties that all inter-network traffic must pass through it, whereby all unauthorized (according to some rule-set or security policy) traffic is prevented from passage. The firewall must operate correctly and be free from compromise. To further compound this difficulty, firewalls are filters. As such they must allow selected external traffic to pass through to the system or network being protected, especially if useful information exchange between the systems and networks separated by the firewall, is to take place. Firewalls have no way to filter out hostile traffic, without prior knowledge of such traffic. Also, service packages, such as e-mail, containing corrupted command macro programs (e.g. macro viruses) are impervious to firewalls. Possible legitimate bit configurations in command fields of standard message traffic passing through a firewall could trigger disruptive events, when entering a protected system or network. Firewalls, acting as an address translation proxy for an inside/protected system or network, can protect that system or network from exposure, to an external system or network, of its internal and critical address information. Again, one assumes (usually, without rigorous basis) correctness of the proxy software function.
Although firewalls and anti-virus software are steps in the right direction, more universal protection of information systems or networks is needed, whereby such protection is easily verifiable, cost-effective, and does not require “apriori knowledge” to successfully execute a detection and/or filtering function, and is software independent.
SUMMARY OF THE INVENTION
The present invention is directed to the use of a computer hardware device which functions as an inter domain screen or signal processor hereafter referred to as the IDS. The IDS is a unique data flow control architecture and device family, within which two unique processes are executed. The IDS protects its host system from compromise from any external connections. The IDS contains an intermediate-domain-device (IDD), sockets which connect the IDD to the host system, and sockets which connect the IDD to external domains. External domains, which are to exchange information with the host, are prevented, by the IDS from compromising the host. The intermediate domain (embodied by the IDD) is a special purpose domain for information exchange. The purpose of the IDS is to permit maximum information interchange, while preventing external signals from directly entering a protected domain or host. The term “host system” is used synonymously with “protected domain”. The external signals may be the carrier of hostile executable code. Viruses, worms, triggers for trap-door and Trojan horse type software, and other forms of hostile signals use incoming data signals to enter a protected (target) information system environment. That is, the information being exchanged, including any hostile data, is contained in data sets carried by signals. The hostile data sets depend on the structural integrity of the incoming data stream or signal(s) for the necessary maintenance of its own structure. With the present invention, this structural integrity is disrupted, while the information carried by the data stream is preserved in the IDS. The InfoSec processes executed are isolation of external signals, and derivation of the information content of such signals and are referenced as a modified-read process. To achieve this, an “information-preserving” data transformation takes place in the IDS on these potentially corrupted incoming external data signals such as by processing an incoming signal containing an initial data set in such a manner as to extract the information in the initial data set, thus creating a signal having a different data set, and, thereafter, transmitting the different data sets to the host domain. Such processing includes converting the type and/or format of signals such as converting a telephone signal to a T.V. signal or converting an analog signal to a digital signal.
The intermediate domain and the modified-read function which takes place therein form a protective screen for the internal or host system or domain, to which they are attached. The modified-read process does not require prior knowledge of a p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes and systems for secured information exchange using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes and systems for secured information exchange using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes and systems for secured information exchange using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2987462

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.