Process of mounting spring contacts to semiconductor devices

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Assembly of plural semiconductive substrates each possessing...

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S110000, C438S113000, C438S117000, C438S652000

Utility Patent

active

06168974

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to making temporary, pressure connections between electronic components and, more particularly, to techniques for mounting resilient contact structures (spring contacts) to semiconductor devices prior to their packaging, preferably prior to the individual semiconductor devices being singulated (separated) from a semiconductor wafer.
BACKGROUND OF THE INVENTION
Individual semiconductor (integrated circuit) devices (dies) are typically produced by creating several identical devices on a semiconductor wafer, using known techniques of photolithography, deposition, and the like. Generally, these processes are intended to create a plurality of fully-functional integrated circuit devices, prior to singulating (severing) the individual dies from the semiconductor wafer.
Generally, after singulating the semiconductor dies (devices) from the wafer, they are packaged (finally assembled). Various techniques are known for attaching semiconductor dies to other components, including: (a) wire bonding, (b) tape-automated bonding (TAB), and (c) flip-chip bonding.
It is generally desirable to be able to identify which of the plurality of dies on a wafer are good dies prior to their packaging, and preferably prior to their being singulated from the wafer. To this end, a wafer “tester” or “prober” may advantageously be employed to make a plurality of discrete pressure connections to a like plurality of discrete terminals (bond pads) on the dies, and provide signals (including power) to the dies. In this manner, the semiconductor dies can be exercised (tested and burned in), prior to singulating the dies from the wafer.
A conventional component of a wafer tester is a “probe card” to which a plurality of spring-like probe elements (e.g., titanium needles) are connected—tips of the probe elements effecting the pressure connections to the respective bond pads of the semiconductor dies. Certain difficulties are inherent in any such technique for probing semiconductor dies. For example, modern integrated circuits include many thousands of transistor elements requiring many hundreds of bond pads disposed in close proximity to one another (e.g., 5 mils center-to-center).
To effect reliable pressure connections to a semiconductor device, particularly for probing the device, one must be concerned with several parameters including, but not limited to: alignment, probe force, overdrive, contact force, balanced contact force, scrub, contact resistance, and planarization. A general discussion of these parameters may be found in U.S. Pat. No. 4,837,622, entitled HIGH DENSITY PROBE CARD, incorporated by reference herein.
Wafer testers may alternately employ a probe membrane having a central contact bump area, as is discussed in U.S. Pat. No. 5,422,574, entitled LARGE SCALE PROTRUSION MEMBRANE FOR SEMICONDUCTOR DEVICES UNDER TEST WITH VERY HIGH PIN COUNTS, incorporated by reference herein. As noted in this patent, “A test system typically comprises a test controller for executing and controlling a series of test programs, a wafer dispensing system for mechanically handling and positioning wafers in preparation for testing and a probe card for maintaining an accurate mechanical contact with the device-under-test (DUT).” (column 1, lines 41-46)
Generally, interconnections between electronic components can be classified into the two broad categories of “relatively permanent” and “readily demountable”.
An example of a “relatively permanent” connection is a solder joint. Once two components are soldered to one another, a process of unsoldering must be used to separate the components. A wire bond is another example of a “relatively permanent” connection.
An example of a “readily demountable” connection is rigid pins of one electronic component being received by resilient socket elements of another electronic component. The socket elements exert a contact force (pressure) on the pins in an amount sufficient to ensure a reliable electrical connection therebetween.
Interconnection elements intended to make pressure contact with terminals of an electronic component are referred to herein as “springs” or “spring elements” or “spring contacts”. Generally, a certain minimum contact force is desired to effect reliable pressure contact to electronic components (e.g., to terminals on electronic components). For example, a contact (load) force of approximately 15 grams (including as little as 2 grams or less and as much as 150 grams or more, per contact) may be desired to ensure that a reliable electrical connection is made to a terminal of an electronic component which may be contaminated with films on its surface, or which has corrosion or oxidation products on its surface. The minimum contact force required of each spring demands either that the yield strength of the spring material or that the size of the spring element are increased. As a general proposition, the higher the yield strength of a material, the more difficult it will be to work with (e.g., punch, bend, etc.). And the desire to make springs smaller essentially rules out making them larger in cross-section.
Probe elements are exemplary of a class of spring elements of particular relevance to the present invention. Prior art probe elements are commonly fabricated from titanium, a relatively hard (high yield strength) material. When it is desired to mount such relatively hard materials to terminals of an electronic component, relatively “hostile” (e.g., high temperature) processes such as brazing are required. Such “hostile” processes are generally not desirable (and often not feasible) in the context of certain relatively “fragile” electronic components such as semiconductor devices. In contrast thereto, wire bonding is an example of a relatively “friendly” processes which is much less potentially damaging to fragile electronic components than brazing. Soldering is another example of a relatively “friendly” process. However, both solder and gold are relatively soft (low yield strength) materials which will not function well as spring elements.
A subtle problem associated with interconnection elements, including spring contacts, is that, often, the terminals of an electronic component are not perfectly coplanar. Interconnection elements lacking in some mechanism incorporated therewith for accommodating these “tolerances” (gross non-planarities) will be hard pressed to make consistent contact pressure contact with the terminals of the electronic component.
The following U.S. patents, incorporated by reference herein, are cited as being of general interest vis-a-vis making connections, particularly pressure connections, to electronic components: U.S. Pat. Nos. 5,386,344 (FLEX CIRCUIT CARD ELASTOMERIC CABLE CONNECTOR ASSEMBLY); 5,336,380 (SPRING BIASED TAPERED CONTACT ELEMENTS FOR ELECTRICAL CONNECTORS AND INTEGRATED CIRCUIT PACKAGES); 5,317,479 (PLATED COMPLIANT LEAD); 5,086,337 (CONNECTING STRUCTURE OF ELECTRONIC PART AND ELECTRONIC DEVICE USING THE STRUCTURE); 5,067,007 (SEMICONDUCTOR DEVICE HAVING LEADS FOR MOUNTING TO A SURFACE OF A PRINTED CIRCUIT BOARD); 4,989,069 (SEMICONDUCTOR PACKAGE HAVING LEADS THAT BREAK-AWAY FROM SUPPORTS); 4,893,172 (CONNECTING STRUCTURE FOR ELECTRONIC PART AND METHOD OF MANUFACTURING THE SAME); 4,793,814 (ELECTRICAL CIRCUIT BOARD INTERCONNECT); 4,777,564 (LEADFORM FOR USE WITH SURFACE MOUNTED COMPONENTS); 4,764,848 (SURFACE MOUNTED ARRAY STRAIN RELIEF DEVICE); 4,667,219 (SEMICONDUCTOR CHIP INTERFACE); 4,642,889 (COMPLIANT INTERCONNECTION AND METHOD THEREFOR); 4,330,165 (PRESS-CONTACT TYPE INTERCONNECTORS); 4,295,700 (INTERCONNECTORS); 4,067,104 (METHOD OF FABRICATING AN ARRAY OF FLEXIBLE METALLIC INTERCONNECTS·FOR COUPLING MICROELECTRONICS COMPONENTS); 3,795,037 (ELECTRICAL CONNECTOR DEVICES); 3,616,532 (MULTILAYER PRINTED CIRCUIT ELECTRICAL INTERCONNECTION DEVICE); and 3,509,270 (INTERCONNECTION FOR PRINTED CIRCUITS AND METHOD OF MAKING SAME).
It would appear advantageous to provide the semiconductor device itself with a mechanism for effecting pressure contacts. A limited number

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process of mounting spring contacts to semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process of mounting spring contacts to semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of mounting spring contacts to semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2495032

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.