Process of crystallizing semiconductor thin film and laser...

Semiconductor device manufacturing: process – Formation of semiconductive active region on any substrate – Amorphous semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S486000, C315S111210, C359S619000

Reexamination Certificate

active

06482722

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process of crystallizing a semiconductor thin film, a laser irradiation system used for carrying out the crystallization process, a thin film transistor fabricated by using the process and system, and a display using the thin film transistor.
Thin film transistors have been widely used as switching devices for liquid crystal displays and organic EL displays. In particular, a thin film transistor including an active layer made from poly-crystal silicon is advantageous in that not only switching devices and peripheral drive circuits can be provided on the same substrate. The poly-crystal silicon thin film transistor is also advantageous in that it can be made fine, to allow the opening ratio of the pixel structure to be increased. For these reasons, the poly-crystal silicon thin film transistor has received attention as a device for a high-definition display. In recent years, a technique of fabricating the poly-crystal silicon thin film transistor by using a low temperature process performed at 600° C. or less has been actively studied. The adoption of the so-called low temperature process eliminates the need of using an expensive heat-resisting substrate, and thereby contributes to cost reduction and enlargement of the display. In particular, it has been Increasingly required to pack not only switching devices for pixels and peripheral drive circuits but also a highly functional device represented by a central processing unit (CPU) on the same substrate. To meet such a requirement, it is expected to develop a technique of forming a poly-crystal silicon thin film having a high quality similar to that of a single crystal silicon thin film.
In accordance with the related art low temperature process, an excimer laser beam or electron beam formed in a long-sized shape or linear shape is scanned to irradiate the surface of a substrate on which amorphous silicon is previously deposited, to convert the amorphous silicon into poly-crystal silicon. Alternatively, the substrate is collectively irradiated with an excimer laser beam formed into a rectangular shape having a large area, to convert amorphous silicon into poly-crystal silicon. The irradiation of the substrate with a high energy beam such as a laser beam or electron beam can rapidly heat and melt only amorphous silicon on the substrate without giving damages to the substrate. The crystallization of silicon occurs at the subsequent cooling step, to result in an aggregation of poly-crystals having a relatively large grain size. For the energy beam having been used, however, the pulse continuation time is as very short as 20-200 ns. As a result, since a time required for amorphous silicon to be re-solidified after being melted is very short, so that the melted silicon is actually rapidly cooled and converted into poly-crystal silicon. The occurrence frequency of crystal nuclei becomes higher by rapid cooling of the melted silicon. As a result, the grain size of the poly-crystal silicon thus obtained becomes smaller. The mobility of the thin film transistor using the poly-crystal silicon having a small grain size as an active layer is as small as about 80 cm
2
/Vs for the N-channel type MOS transistor.
Accordingly, to pack a circuit having a high function, together with switching devices for pixels, on the same substrate, it is required to significantly improve the performance of thin film transistors. To meet such a requirement, there has been proposed a technique of irradiating a substrate with a laser beam in a state in which the substrate is heated at about 400° C. By previously heating the substrate, the re-crystallization rate (cooling rate) after laser irradiation becomes slow, to thereby increase the crystal grain size. According to this technique, however, in the case of using a glass substrate, the upper limit of the heating temperature becomes about 450° C. due to the thermal limitation of the glass substrate, which temperature is much lower than the melting point of silicon, that is, 1400° C. As a result, even by adopting the method of pre-heating the substrate, poly-crystal silicon is rapidly cooled after laser irradiation, so that it is difficult to obtain poly-crystal silicon having a large crystal grain size similar to that of single crystal silicon.
Another method of forming poly-crystal silicon having a large crystal grain size is disclosed, for example, in Japanese Patent Laid-open No. Hei 7-297125, in which a catalyst metal is introduced in a silicon thin film for allowing crystals of silicon to grow in a specific crystal orientation. The method, however, basically requires a solid-growth process characterized in that annealing is performed at a temperature of 550° C. or more, and therefore, the method is poor in matching with the low temperature process. Further, since a catalyst metal remains in the silicon thin film, it is required to provide the additional step of removing the metal component by gettering.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a process of simply forming a silicon thin film having a crystallinity similar to that of single crystal silicon over a large area at a high throughput.
To achieve the above object, according to a first aspect of the present invention, there is provided a process of crystallizing a semiconductor thin film previously formed on a substrate by irradiating the semiconductor thin film with a laser beam, including:
a preparation step of dividing the surface of the substrate into a plurality of division regions, and shaping a laser beam to adjust an irradiation region of the laser beam such that one of the division regions is collectively irradiated with one shot of the laser beam;
a crystallization step of irradiating one of the division regions with the laser beam while optically modulating the intensity of the laser beam such that a cyclic light-and-dark pattern is projected on the irradiation region, and irradiating the same division region by at least one time after shifting the pattern such that the light and dark portions of the pattern after shifting are not overlapped to those of the pattern before shifting; and
a scanning step of shifting the irradiation region of the laser beam to the next division region, and repeating the crystallization step for the division region.
The crystallization step preferably includes a step of controlling the direction of crystallization by making use of a temperature gradient corresponding to the light-and-dark pattern, and irradiating the same division region again after shifting the pattern by a distance within a crystallization distance by one shot of laser irradiation. Further, the crystallization step is preferably carried out in a state in which the substrate is heated at a temperature of 200° C. or more.
According to a second aspect of the present invention, there is provided a laser irradiation system for crystallizing a semiconductor thin film previously formed on a substrate by irradiating the semiconductor thin film with a laser beam, including:
shaping means for shaping, when the surface of the substrate is divided into a plurality of division regions, a laser beam to adjust an irradiation region of the laser beam such that one of the division regions is collectively irradiated with one shot of the laser beam;
optical means for optically modulating the intensity of the laser beam such that a cyclic light-and-dark pattern is projected on the irradiation region;
primary scanning means for irradiating one of the division regions with the optically modulated laser beam, and irradiating the same division region after shifting the pattern such that the light and dark portions of the pattern after shifting are not overlapped to those of the pattern before shifting; and
secondary scanning means for shifting the irradiation region of the laser beam to the next division region, and repeating the crystallization step for the division region.
The optical means preferably includes a micro-slit on which a cyclic light-and-dark pattern is d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process of crystallizing semiconductor thin film and laser... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process of crystallizing semiconductor thin film and laser..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of crystallizing semiconductor thin film and laser... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2935823

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.