Process for preparing a semiconductor wafer

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Making plural separate devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S118000, C438S127000

Reexamination Certificate

active

06297076

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an adhesive sheet for a semiconductor wafer (referred to as “wafer” hereinafter) and a process for preparing a semiconductor device using this adhesive sheet. More particularly, the invention relates to an adhesive sheet which is used for applying and fixing thereon a wafer having been subjected to wafer processing in order to dice the wafer into element chips (referred to as “chips” hereinafter) in a process for preparing a semiconductor device having such a structure that the back surfaces of the chips are partially or wholly in contact with a package molding resin (sealing resin), and the invention also relates to a process for preparing a semiconductor device using this adhesive sheet.
BACKGROUND OF THE INVENTION
With higher integration of memories, there have recently been made a variety of requests to semiconductor device by users, for example, high speed response, reduction of electric power consumption, widening of output word structure and enlargement of package variation. For coping with these various requests, package designing should be made flexibly.
In order to satisfy the above-mentioned requests, semiconductor devices of LOC (Lead On Chip) structure have been proposed, as described in for example “Nikkei Microdevices” (pp. 89-97, February, 1991) and Japanese Patent Laid-Open Publication No. 246125/1990. The LOC structure has various advantages such as minimized size, high speed response, reduced noise and easy layout, and hence it is said that the LOC structure is most strikingly adopted to large-scale semiconductor devices which are expected to be developed in future.
In the LOC structure, as shown in
FIG. 7
, plural inner leads of a semiconductor device lead frame (referred to as “lead frame” hereinafter) are fixed onto a surface of a chip, on which a circuit has been formed, by way of insulating tapes which electrically insulate the inner leads from the chip, and the inner leads are electrically connected with the chip by a bonding wire. The semiconductor device is sealed with a molding resin, and the back surface of the chip is in contact with the molding resin.
The LOC structure has various advantages as described above, but this structure involves problems which must be solved because it is entirely different from structures of conventional packages. One of problems which must be solved is lowering of reliability caused by separation between the chips and the molding resin, occurrence of package cracks, etc.
The lowering of reliability caused by occurrence of package cracks, etc. is not an inherent problem in the semiconductor device having the LOC structure, and it is a very serious problem to all the semiconductor devices having such structures as shown in
FIGS. 8
to
9
wherein the back surface of the chip is partially or wholly in contact with the molding resin.
FIG. 8
shows a semiconductor device having such a structure that a die pad has a slit.
FIG. 9
shows a semiconductor device having a COL (Chip On Lead) structure.
The mechanism of the separation between the chips and the molding resin or the occurrence of package cracks has been diversely reported so far.
One of the mechanism of these phenomena is an invasion of moisture into the IC package.
The invasion routes of moisture into the IC package are broadly classified as follows:
(1) invasion through interface between the lead frame and the resin,
(2) invasion through interface between the resin and a filler filled in the resin, and
(3) invasion through the resin bulk.
These invasions are caused by capillarity or diffusion, and as the environmental temperature or humidity at which the IC package is left rises, the IC package absorbs moisture more easily. Further, as the environmental temperature rises, the moisture diffusion rate at the initial stage becomes higher and the moisture absorption reaches its saturation point more rapidly. For example, there is a report that when the IC package is allowed to stand at 85° C. and 85% RH (RH: relative humidity) and to absorb moisture, the moisture absorption reaches 80 to 90% of its saturation point in about 168 hours. Moreover, even in an ordinary atmosphere of an ordinary temperature and 75% RH, moisture easily permeates the molding resin material of the IC package, for example, an epoxy resin.
In the IC package such as SOJ or QFP, soldering is conducted generally by means of IR reflowing in which heating is effected by infrared rays or vapor reflowing in which an inert liquid is vaporized and the IC package is exposed to the vapor of high temperature since both reflowing methods are suitable for mass production. In the IR reflowing, the former method, the IC package is exposed to a high temperature of 240 to 250° C., whereby the moisture which has invaded inside of the IC package as described above is explosively expanded by the high temperature during the reflowing operation, and thereby water vapor pressure is applied onto the interface between the epoxy resin and the lead frame to bring about interfacial separation therebetween. As a result, package cracks take place.
The package cracks caused by the IR reflowing are often observed even when the package is allowed to stand at an ordinary temperature for about 168 hours, though it depends on the shape of the lead frame in the package, the surface area of the chips, etc.
One reason for promoting the interfacial separation is a decrease of adhesion strength between the resin material used for sealing the package, for example, an epoxy resin, and the contact surface of the chip. The adhesion strength is largely influenced by cleanliness of the adherend surface. For example, the adhesion strength is very sensitive even to a foreign substance having an angstrom level thickness remaining on the adherend surface so as to decrease the adhesion strength, whereby invasion of moisture or retention thereof within the package is easily made, and finally the package cracks are brought about.
By the way, semiconductor wafers of silicon, gallium-arsenide, etc. are usually produced in relatively large diameter, and the wafers are diced into chips, which are then transferred to the subsequent mounting stage. At this time, the semiconductor wafers are subjected to such operations as dicing, rinsing, drying and irradiation of radiation rays to cure the radiation curing adhesive layer of an adhesive sheet in a state that the semiconductor wafers are adhered to the adhesive sheet. Then, an expansion operation of the adhesive sheet is carried out if necessary, and thereafter operations of picking up the chips and mounting the chips are carried out.
Adhesive sheets which are intended for use in the processing stages of wafers, from the dicing stage up to the pick-up stage, are desired to have an adhesion force sufficient to retain wafers and/or chips thereon in the course from the dicing stage up to the expanding stage, but in the pick-up stage, they are desired to only retain an adhesion force of such an extent that no adhesive remains on the picked-up wafer chips. As such adhesive sheets for applying wafers thereon as mentioned above, those described in for example Japanese Patent Publication No. 56112/1989 have been generally used, and they can be used without any problem in preparing semiconductor devices of conventional type.
However, in the preparation of semiconductor devices having such a structure that the back surfaces of the chips are partially or wholly in contact with the molding resin, a trouble of package crack occurrence is observed and the reliability of the semiconductor device is reduced.
OBJECT OF THE INVENTION
The present invention has been made in the light of the foregoing techniques in the prior art, and it is an object of the present invention to provide an adhesive sheet for wafer (referred to as “adhesive sheet for wafer” hereinafter) which is used in preparing a semiconductor device having such a structure that the back surfaces of chips are partially or wholly in contact with a molding resin and which can prevent occurrence of packa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing a semiconductor wafer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing a semiconductor wafer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing a semiconductor wafer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2558594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.