Process for making thermal negative printing plate

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S278100, C430S302000, C430S350000, C430S394000, C430S401000, C430S434000, C430S494000, C430S944000, C430S945000, C430S964000, C101S463100, C101S467000

Reexamination Certificate

active

06599676

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for making a thermally imageably, negative working printing plate.
2. Brief Description of Art
The use of thermally sensitive, negative working printing plates comprising patterning compositions coated over a hydrophilic underlayer is well known. Several methods for forming images using such compositions are known. All these methods are based on the principle of introducing a differentiation in properties between the image-wise exposed and non-exposed parts of thermally sensitive composition, e.g. difference in solubility, adhesion, tackiness, permeability etc. Such generated difference may be subsequently employed in an additional developing step to produce a visible image. A difference in solubility in an aqueous developer between exposed and non-exposed parts of the thermally sensitive compositions is often used for the production of lithographic printing plates.
The use of the difference in solubility is described in the following documents:
U.S. Pat. No. 4,356,254 (Takahashi et al.) is directed to an image-forming method wherein a light-sensitive material comprising a support having a light-sensitive layer provided on the support. The light-sensitive layer containing a quinonediazide sensitizer. This light-sensitive material is imagewise exposed with a high intensity energy beam (e.g. a laser beam) to make the o-quinonediazide compound alkaline soluble in those areas that are imaged; then overall heating the light-sensitive material to insolubilize the exposed areas; then overall exposing (flood exposing) the thus-processed material with light to solubilize unexposed areas; and then developing with an alkaline developer to provide a negative image by removing alkaline soluble areas of said layer. This reference does not teach employing acid generator-type light sensitive layers.
U.S. Pat. No. 4,356,254 (Stahlhofen et al.) describes a process for producing negative relief copies using a light-sensitive material that contains either a benzoquinone diazide compound or a naphthoquinone diazide compound. This process includes the steps of imagewise exposing the light-sensitive material; then heating the light-sensitive material; then flood exposing the thus processed material which is followed by developing the material, whereby the layer areas which were not struck by light in the first imagewise exposure are washed off. This reference uses quinone diazides as the sensitizers in the light-sensitive material and does not teach the use of acid generator-type sensitizer.
U.S. Pat. No. 4,927,741 (Garth et al.) describes a method for the reversal of photosoluble lithographic printing plates having an aromatic quinone diazide-containing coating. This method includes the steps of (1) imagewise exposing a portion of the coated surface with UV lamp to render that portion soluble in a developer; (2) heating the plate and coating to render the imagewise exposed relatively insoluble in the developer; (3) then overall irradiating the coated surface to solubilize the remaining portion of the coated surface not previously exposed, wherein the overall irradiation step (3) is applied through water. This process does not teach the use of acid generator-type sensitizers, but instead is limited to quinone diazide sensitizers.
U.S. Pat. No. 5,340,699 (Haley) teaches a method of forming a lithographic printing surface comprising the steps of: (a) providing a lithographic printing plate comprising a support and an imaging layer containing an admixture of (1) a resole resin, (2) a novalac resin, (3) a latent Bronsted acid and (4) an infrared absorber; (b) imagewise exposing said lithographic printing plate to activating radiation; (c) heating said lithographic printing plate to provide reduced solubility in exposed areas and increased solubility in unexposed areas; and (d) contacting said lithographic printing plate with an aqueous alkaline developing solution to remove the unexposed areas thereof and thereby form a lithographic printing surface. This process does not teach using a heat treatment between the flood exposure step (c) and the development step (d).
U.S. Pat. No. 5,380,622 (Roser) describes the production of negative relief copies of a recording plate that uses naphthoquinone diazide compounds as the photosensitive compounds. This process includes the step of: (1) imagewise exposing the recording plate using UV, metal halide, xenon or arc lamps; (2) then heating the exposed plate; (3) then uniform exposing the plate to the same light source used in the imagewise exposure; and (4) then developing the thus-processed recording plate with an aqueous alkaline developer to dissolve the alkali-soluble components and form a negative relief copy. This process also does not teach the use of acid generator-type sensitizers, but is limited to quinone diazide sensitizers.
U.S. Pat. No. 5,631,119 (Shinozaki) teaches an image formation process that employs photosensitive composition layer containing a quinone diazide photosensitizer and includes the steps of: (1) exposing the entire surface (flood exposing) of the photosensitive composition layer, to light rays (normally at 290 to 500 manometers) that render the quinone diazide compound soluble in an alkaline developer; (2) then imagewise heating the flood exposed photosensitive composition layer (such as with a thermal head printer); and (3) then developing with an aqueous alkaline solution.
U.S. Pat. No. 5,922,502 (Van Damme et al.) teaches a method for making a lithographic printing plate comprising the steps of (a) imagewise exposing an imaging element having a photosensitive layer and a thermosensitive layer with a laser thereby imagewise rendering the thermosensitive layer transparent to light for which said photosensitive layer has spectral sensitivity; (b) overall exposing the imaged element with light for which said photosensitive layer has spectra sensitivity; and (c) developing the element. This process does not teach an intermediate heat treating step.
European Patent Application EP 0 851 296 A1 (Habenhauer et al.) teaches a process similar to that in U.S. Pat. No. 5,922,502. Again, no intermediate heat treatment is taught.
Japanese Published Patent Application No. 11190902 A2 (Kunio) teaches making a heat mode recording lithographic printing plate having a image forming layer containing a quinone diazide compound and an infrared absorber. This plate is formed by (1) imagewise exposing the image forming layer with laser beams; (2) then flood exposing it to ultraviolet rays; and (3) then developing it with an aqueous alkaline developer.
Japanese Published Patent Application No. 267266 A2 (Mitsumasa) teaches a method for making lithographic printing plates that includes the steps: (1) imagewise exposing a photosensitive layer to visible laser beams; (2) then developing the imagewise exposed photosensitive layer; and (3) then flood exposing the developed photosensitive layer to UV light.
Japanese Published Patent Application No. 089478 A2 (Yasuo) teaches a method for making a photopolymerizable printing plate wherein a photosensitive layer is imagewise exposed to specified exposure light using a laser, then developed and then flood exposed to light at least 100 times the quantity employed in the imagewise exposure.
As illustrated above thermally sensitive compositions can be used in a variety of methods to reproduce images. Among these methods those, which employed patterning compositions containing light-sensitive material that is a mixture of an acid generator, a cross-linking resin or compound, a binder resin and an infrared (IR) absorber, are commonly used for the production of printing plates. The plates are imaged by imagewise exposure to IR radiation to produce imaged areas, which after further processing steps are insoluble in a developer liquid. These parts consist of a coating which results after acid catalyzed network formation between binder resin and crosslinker.
However, these thermal imaging systems require a heat treatment step aft

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for making thermal negative printing plate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for making thermal negative printing plate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making thermal negative printing plate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3084734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.