Paper making and fiber liberation – Processes of chemical liberation – recovery or purification... – Gas – vapor or mist contact
Reexamination Certificate
2001-10-10
2002-12-10
Nguyen, Dean T. (Department: 3621)
Paper making and fiber liberation
Processes of chemical liberation, recovery or purification...
Gas, vapor or mist contact
C162S066000, C162S067000, C162S078000
Reexamination Certificate
active
06491788
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to processes for making lyocell fibers. In particular, the method includes a step for reducing the average degree of polymerization of an alkaline pulp without substantially reducing the hemicellulose or increasing the copper number of the pulp to make the fibers.
BACKGROUND OF THE INVENTION
Cellulose is a polymer of D-glucose and is a structural component of plant cell walls. Cellulose is especially abundant in tree trunks from which it is extracted, converted into pulp, and thereafter utilized to manufacture a variety of products. Rayon is the name given to a fibrous form of regenerated cellulose that is extensively used in the textile industry to manufacture articles of clothing. For over a century strong fibers of rayon have been produced by the viscose and cuprammonium processes. The latter process was first patented in 1890 and the viscose process two years later. In the viscose process cellulose is first steeped in a mercerizing strength caustic soda solution to form an alkali cellulose. This is reacted with carbon disulfide to form cellulose xanthate which is then dissolved in dilute caustic soda solution. After filtration and deaeration the xanthate solution is extruded from submerged spinnerets into a regenerating bath of sulfuric acid, sodium sulfate, zinc sulfate, and glucose to form continuous filaments. The resulting so-called viscose rayon is presently used in textiles and was formerly widely used for reinforcing rubber articles such as tires and drive belts.
Cellulose is also soluble in a solution of ammonia copper oxide. This property forms the basis for production of cuprammonium rayon. The cellulose solution is forced through submerged spinnerets into a solution of 5% caustic soda or dilute sulfuric acid to form the fibers, which are then decoppered and washed. Cuprammonium rayon is available in fibers of very low deniers and is used almost exclusively in textiles.
The foregoing processes for preparing rayon both require that the cellulose be chemically derivatized or complexed in order to render it soluble and therefore capable of being spun into fibers. In the viscose process, the cellulose is derivatized, while in the cuprammonium rayon process, the cellulose is complexed. In either process, the derivatized or complexed cellulose must be regenerated and the reagents that were used to solubilize it must be removed. The derivatization and regeneration steps in the production of rayon significantly add to the cost of this form of cellulose fiber. Consequently, in recent years attempts have been made to identify solvents that are capable of dissolving underivatized cellulose to form a dope of underivatized cellulose from which fibers can be spun.
One class of organic solvents useful for dissolving cellulose are the amine-N oxides, in particular the tertiary amine-N oxides. For example, Graenacher, in U.S. Pat. No. 2,179,181, discloses a group of amine oxide materials suitable as solvents. Johnson, in U.S. Pat. No. 3,447,939, describes the use of anhydrous N-methylmorpholine-N-oxide (NMMO) and other amine N-oxides as solvents for cellulose and many other natural and synthetic polymers. Franks et al., in U.S. Pat. Nos. 4,145,532 and 4,196,282, deal with the difficulties of dissolving cellulose in amine oxide solvents and of achieving higher concentrations of cellulose.
Lyocell is an accepted generic term for a fiber composed of cellulose precipitated from an organic solution in which no substitution of hydroxyl groups takes place and no chemical intermediates are formed. Several manufacturers presently produce lyocell fibers, principally for use in the textile industry. For example, Accords, Ltd. presently manufactures and sells a lyocell fiber called Tencel® fiber.
It is believed that currently available lyocell fibers are produced from high quality wood pulps that have been extensively processed to remove non-cellulose components, especially hemicellulose. These highly processed pulps are referred to as dissolving grade or high alpha (or high &agr;) pulps, where the term alpha (or &agr;) refers to the percentage of cellulose. Thus, a high alpha pulp contains a high percentage of cellulose, and a correspondingly low percentage of other components, especially hemicellulose. The processing required to generate a high alpha pulp significantly adds to the cost of lyocell fibers and products manufactured therefrom.
For example, when the Kraft process is used to produce a dissolving grade pulp, a mixture of sodium sulfide and sodium hydroxide is used to pulp the wood. Since conventional Kraft processes stabilize residual hemicelluloses against further alkaline attack, it is not possible to obtain acceptable quality dissolving pulps, i.e., high alpha pulps, through subsequent treatment of Kraft pulp in the bleaching stages. In order to prepare dissolving type pulps by the Kraft process, it is necessary to give the raw material an acidic pretreatment before the alkaline pulping stage. A significant amount of material primarily hemicellulose, on the order of 10% or greater of the original wood substance, is solubilized in this acid phase pretreatment and thus process yields drop. Under the prehydrolysis conditions, the cellulose is largely resistant to attack, but the residual hemicelluloses are degraded to a much shorter chain length and can therefore be removed to a large extent in the subsequent Kraft cook by a variety of hemicellulose hydrolysis reactions or by dissolution.
The prehydrolysis stage normally involves treatment of wood at elevated temperature (150-180° C.) with dilute mineral acid (sulfuric or aqueous sulfur dioxide) or with water alone requiring times up to 2 hours at the lower temperatures. In the latter case, liberated acetic acid from certain of the naturally occurring polysaccharides (predominantly the mannans in softwoods and the xylan in hardwoods) lowers the pH below 4.
Moreover, a relatively low copper number, reflective of the relative carbonyl content of the cellulose, is a desirable property of a pulp that is to be used to make lyocell fibers because it is generally believed that a high copper number causes cellulose and solvent degradation, before, during, and/or after dissolution in an amine oxide solvent. The degraded solvent can either be disposed of or regenerated; however, due to its cost it is generally undesirable to dispose of the solvent. Regeneration of the solvent suffers from the drawback that the regeneration process involves dangerous, potentially explosive conditions.
A low transition metal content is a desirable property of a pulp that is to be used to make lyocell fibers because, for example, transition metals accelerate the undesirable degradation of cellulose and NMMO in the lyocell process.
In view of the expense of producing commercial dissolving grade pulps it would be desirable to have alternatives to conventional high alpha dissolving grade pulps as a lyocell raw material. In addition, pulp manufacturers would like to minimize the capital investment necessary to produce such types of pulps by utilizing existing capital plants.
In order to control lyocell fiber properties, lyocell manufacturers utilize dopes that comprise a blend of different pulps having different ranges of average degree of polymerization values. In view of this, there is also a need for pulp manufacturers to produce pulps having an average degree of polymerization within a relatively narrow band.
Thus, there is a need for relatively inexpensive, low alpha (e.g., high yield) pulps that can be used to make lyocell fibers, for a process of making the foregoing low alpha pulps using capital equipment that is currently available to pulp manufacturers, and for lyocell fibers from the foregoing low alpha pulp. Preferably, the desired low alpha pulps will have a desirably low copper number, a desirably low lignin content and a desirably low transition metal content.
In the prior application Ser. No. 09/256,197 now U.S. Pat. No. 6,210,801, assigned to the assignee of the subject application, variou
Luo Mengkui
Neogi Amar N.
Persinger, Jr. W. Harvey
Roscelli Vincent A.
Sealey, II James E.
Nguyen Dean T.
Weyerhaeuser Company
LandOfFree
Process for making lyocell fibers from alkaline pulp having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for making lyocell fibers from alkaline pulp having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making lyocell fibers from alkaline pulp having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2980752