Process for expanded pellet production

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Basic ingredient is starch based batter – dough product – etc.

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S448000, C426S454000, C426S560000

Reexamination Certificate

active

06224933

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a process for producing expandable masa-based pellets and, in particular, to a process providing precise control of the processed masa cook level, moisture level, gelatinization and resultant product quality despite variations in the characteristics of the starting meal. The invention manipulates steam and water addition in the preconditioner and water addition and rotation speed in the extruder in order to achieve the appropriate processed meal characteristics at each stage.
2. Description of Related Art
The process for producing pellets as generally adapted in the food industry involves a very minimal cook of starch and forming a shape, such as a particular pasta shape, wherein the product is later cooked in the presence of excess water. Alternatively, cooked meal, such as pressure-cooked corn meal, can be used. The cooked mass is sheeted, cut, and dried for later frying.
Processes for producing masa-based pellets for use as a snack food product are well known in the art. For example, U.S. Pat No. 3,348,950 to Weiss describes a process for making snack food product by first mixing together corn, sucrose, water, and flavor developing ingredients. This mixture is combined with a second mixture of yellow corn grits, water, and sodium bicarbonate. The combined mixture is pre-cooked under pressure of 14 to 20 psi and temperatures between 247 and 259° F. The gelatinized dough is shaped, dried, and formed into pieces for deep-fat frying.
The method disclosed by the Weiss patent is a common process for producing corn meal based pellets that are fried and flavored. Common industry methods, however, are not adequate for the production of a masa-based pellet that expands or pops when fried to produce a light, crispy, and crunchy corn snack. For the purposes of this disclosure, an expanded pellet is one that increases in volume by upwards of 100% due to the rapid vaporization of water within the pellet during rapid heating of the pellet by, for example, deep frying.
Known methods for producing masa-based pellets do not provide the means for precisely controlling the cook level and degree of gelatinization at each stage in order to compensate for minor variations in the characteristics of the starting meal while at the same time inhibiting microbial growth by keeping all related processing temperatures high. When using prior art techniques at higher mixing temperatures, minor variations in the quality of the starting masa- flour meal can result in dramatic variations in the quality of the end product.
For example, conventional pellet production teaches extruding pellets after a relatively cool (around 120° F.) and long (8-15 minutes) preconditioning step that presents a homogenous hydrated mixture to the extruder with approximately 33% moisture. A disadvantage of the relatively cool temperature used during the preconditioning step is that it fosters microbial growth and requires frequent sanitation of the preconditioner. Conventional extrusion takes place at between 240 to 250 rpm with no water injection into the extruder. Raising the temperature of this process using prior art methods in order to counteract microbial growth results in a product that is overcooked. This typically results in the production of an unacceptable amount of “flats,” which are pellets that did not appropriately expand when fried. The use of conventional processing methods at increased preconditioner temperatures also results in a process that is extremely sensitive to variations in the characteristics of the starting meal.
Accordingly, a need exists for a process for expanded pellet production that provides for precise control of cook level, hydration, gelatinization, and quality of the product in order to produce a uniform expanded corn-based snack while also maintaining elevated processing temperatures in order to control microbial growth and limit associated equipment downtime.
SUMMARY OF THE INVENTION
The proposed invention comprises a process for continuously producing masa-based expandable pellets of uniform quality despite minor variations in the characteristics of the incoming meal. The corn meal or masa flour is first admixed with minor ingredients, such as salt, sugar, sodium bicarbonate, and emulsifier. The admix is then flowed through a preconditioner for further mixing. Relative water and steam ratios and water temperature in the preconditioner can be varied to adjust the cook level of the product. The preconditioner is also maintained above a certain minimum temperature in order to discourage microbial growth.
When exiting the preconditioner, the product is a meal having a wet sand consistency. This meal is then routed to an extruder. Cook levels within the extruder are controlled primarily by the addition of water, which acts as a wetting agent or lubricant, thereby resulting in less residence time and lower cook levels. The excess water is removed from the extruder by a vacuum.
The product next goes to a die that produces a thin, uniform ribbon extrudate. This extrudate is cooled and, in one embodiment, split into two separate ribbons. The two separate ribbons are then run through an embosser and placed in contact while introduced into a cutter. Pliable pellets comprising two embossed layers adjoined at the cutting surfaces result at this stage.
The pellets are then dried. The pellets are shelf stable and, at this point, can be de- coupled from the final process. The pellets can then be later popped, for example, by immersion in a fryer, and seasoned to taste. Alternatively, the dried pellets can immediately proceed to a fryer or other cooking means in order to produce the expanded end product.
The above as well as additional features and advantages of the present invention will become apparent in the following written detailed description.


REFERENCES:
patent: 3348950 (1967-10-01), Weiss
patent: 3600193 (1971-08-01), Glabe
patent: 3922370 (1975-11-01), Prakash
patent: 4137161 (1979-01-01), Shimada
patent: 4418088 (1983-11-01), Cantenot
patent: 4645679 (1987-02-01), Lee
patent: 4763569 (1988-08-01), Wenger
patent: 4778690 (1988-10-01), Sadel, Jr. et al.
patent: 5165950 (1992-11-01), Boehmer et al.
patent: 5429835 (1995-07-01), Wenger
patent: 5505978 (1996-04-01), Roy et al.
patent: 5652010 (1997-07-01), Gimmler et al.
patent: 5932264 (1999-08-01), Hurd
patent: 2082602 (1993-05-01), None
patent: 4137161 (1993-05-01), None
patent: 1147758 (1969-04-01), None
Hoseney, R.C. 1996. Principles of cereal science and technology. 2nd Edition, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA.
Fast, R.B. and Caldwell, E.R. 1990. Breakfast Cereals and How They Are Made. Amer. Assn. of Cereal Chemists, Inc., St. Paul, Minnesota, USA.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for expanded pellet production does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for expanded pellet production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for expanded pellet production will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2518233

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.