Process and device for in-situ decontamination of a EUV...

Optics: measuring and testing – Inspection of flaws or impurities

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S597000

Reexamination Certificate

active

06781685

ABSTRACT:

FIELD OF THE INVENTION
The invention concerns a process as well as a device for in-situ decontamination of an EUV lithography device.
BACKGROUND OF THE INVENTION
EUV lithography devices are used in the manufacturing of semiconductor components, e.g. integrated circuits. Lithography devices, which are operated in the wavelength range of extreme ultraviolet (e.g. at a wavelength of 13.4 nm), have primarily multi-layered systems of molybdenum and silicon, for example, as optical elements. EUV lithography devices display a vacuum or an inert gas atmosphere in their interior, however hydrocarbons and/or other carbon compounds cannot be completely prevented from appearing inside the device. These carbon compounds are split by the extreme ultraviolet radiation, leading to a film of contaminated carbons precipitating on the optical element. This contamination by carbon compounds leads to significant losses in reflectivity on the optical surface, which can have a considerable impact on the cost-efficiency of the EUV lithography process.
The problem of contamination is of great significance not only in the case of lithography devices.
In WO 87/02603 a process is described in which satellites, space shuttles, rockets and probes are cleaned during the flight, in which a stream of oxygen, i.e. a ray of oxygen ions is aimed at the external surface to be cleaned. The UV radiation from the sun is used to create additional ozone. Both the oxygen and the ozone react with the carbon contamination by volatile compounds. A sensor can be provided to steer the cleaning process, i.e. to determine when the cleaning process should be started and ended.
According to U.S. Pat. No. 5,024,968, substrates, especially silicon substrates are cleaned of contaminating carbon compounds using UV lasers with a wavelength between 200 and 300 nm. The laser focusing is controlled by the results of residual gas analyses. The substrate is thoroughly washed with inert gas to protect against renewed contamination.
In EP 0 660 188 B1, a lens system is washed with inert gases and externally produced ozone as a protective measure against contamination.
In the publication from E. D. Johnson et al., NIM A266 (1988) 381, the process of how X-ray monochromators are purified in-situ via glow discharges is explained. For this purpose, a glow discharge reactor with oxygen and water lines is connected directly to the monochromator box. The purification process lasts approximately 24 hours. The end of the cleaning process is determined by means of residual gas analyses or spectrometric measurements. A more elaborate method for determining the degree of contamination consists of pumping out the monochromator box from time to time and measuring the reflectivity of the monochromator box.
According to JP H110329931 A, the electrical resistance on the mask is measured during electron radiation lithography in order to determine if the mask must be decontaminated or not. The lithography has several masks available, so that as soon as one mask needs to be cleaned, it can be replaced by a clean mask in reserve. The mask to be cleaned is removed from the radiation process and purified in a side chamber using radiation with ultraviolet light and rinsing it with oxygen.
In EP 0 421 745 B1 a device for decontaminating optical elements is described. For this purpose, gas supply equipment as well as control equipment to select the desired wavelength range for the radiation is set up beside a reaction chamber which holds the optical element to be cleaned. In effect, oxygen and UV radiation is used to photochemically corrode the contamination based primarily of carbon compounds.
In EP 0 874 283 A2, a lithography device is described. The degree of contamination within the device is determined via transmission measurements, and in the event that a threshold value is exceeded, an in-situ purification process is initiated. The UV light used for exposure (ArF Laser, 193 nm) is used for purification. To this end, the exposure process is interrupted and an optical element, e.g. a prism, is inserted into the radiation beam path, which changes the radiation process in such a way that the greatest number of places within the lithography devices are illuminated. The atmosphere inside the lithography device is made up of nitrogen. To support the purification effect, oxygen, ozone or oxygen radicals can be mixed in with the nitrogen. The degree of contamination is also continuously monitored during purification via transmission measurements, and in the event that the threshold value is not met, the purification process is ended.
SUMMARY OF THE INVENTION
Against this background, the task of the invention submitted is to provide a process, i.e. a device for decontaminating an EUV Lithography device, by which standstill periods are avoided and equipment changes to the EUV lithography device to be cleaned are kept to a minimum.
This task is solved by a process as well as by a described herein.
Surprisingly, when it was determined that when a targeted supply of oxygen is fed to the lithography device, the radiation in the beam path used for exposure is sufficient to clean the inside of the device from contamination, as long as the degree of contamination is monitored continuously and compared with the pre-set threshold values. Depending on the actual degree of contamination, the oxygen supply is adjusted for the lithography device. The oxygen supplied is activated in the exposure beam path, spreads out via diffusion and light convection throughout the entire interior of the lithography device and reacts with the layers of contamination.
By continuously monitoring the level of contamination, it can be ensured that the purification process is initiated even if the level of contamination is so low that the normal exposure process is not yet impaired. In addition, since even minor changes in the level of contamination are detected by continually monitoring of the level of contamination, the oxygen supply can be adjusted so that very minor oxygen partial pressures are sufficient to decontaminate the EUV lithography device. This has the advantage that the oxygen is present in the lithography devices in such small amounts that the exposure process is not impacted negatively.
With the exposure radiation in the extreme ultraviolet wavelength range, especially at 13.4 nm, the oxygen molecules O
2
supplied are split into highly reactive oxygen atoms, which in turn oxidatively break down the contaminated film of carbon compounds on the optical element. Too strong of an oxygen supply may result in an oxidative attack on the silicon layer of the multi-layered, molybdenum—silicon system during cleaning. In this case, a layer of quartz (SiO
2
) forms on the surface, which would also lead to a loss of reflection similar to contamination. Using the process according to the invention, however, such impairments to the surface can be prevented. Hence, with the help of the process according to the invention, just the right amount of oxygen is supplied so that the entire film of contaminating carbon and only the contamination containing carbon is removed.
The device according to the invention to decontaminate the optical elements of an EUV lithography device has at least one measuring device to measure the degree of contamination to the optical element(s) as well as a connected control device, which is connected on its side to the O
2
supply and is designed to compare the degree of contamination with at least one preset threshold value and to control the supply of oxygen based on the respective comparison results. Preferably, the measuring device will supply measured values for the degree of contamination on a continuous basis.
A computer is preferably used as the control device. The computer can, for example, be connected with a dosing valve that is opened and closed by computer so that doses of oxygen are added to the vacuum of the EUV lithography device at a certain pressure and at a specific flow rate. The flow measurement can, for example, can be made using a flow meter, the partia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process and device for in-situ decontamination of a EUV... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process and device for in-situ decontamination of a EUV..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and device for in-situ decontamination of a EUV... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.