Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling
Reexamination Certificate
2000-05-22
2003-08-05
Gordon, Paul P. (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Article handling
C700S224000, C700S228000
Reexamination Certificate
active
06604017
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a document handling apparatus and, more particularly, to a document handling apparatus that collates sheets and inserts the sheets into a printing system.
BACKGROUND OF THE INVENTION
Customized documents are commonly used in the form of deposit slips, checks, and other types of bank drafts and personalized documents. The use of these types of documents has become widespread throughout the world and many institutions, such as banks and credit unions, are dependent upon these documents for efficient operation. The widespread use of these customized documents has lead to numerous efforts to develop systems that can print them fast and without error.
Conventional check printing processes typically use a collator and either a printer or a press. The collator first organizes different types of check stock, and then selects (“picks”) the appropriate type of check stock and feeds it to the printer. Once received by the printer, the check stock is printed with customized information, such as an account-holder's name and address.
Many check-printing systems use a press-type printer that includes an imaging plate. The imaging plate is typically arranged in a document-feed path for engaging the face of the documents as they are guided by document-guiding rollers. Such document-guiding mechanisms are conventional in photocopying machines. When printing a document, the printer is designed to transport the document around the rollers in order to guide it to the imaging plate for printing.
In connection with the present invention, several disadvantages of the above-described process have been recognized. One disadvantage concerns productivity. It is important that the document-feeding path to and through the printer be as error-free as possible in order to minimize the likelihood of the paper-jams. In the above-described process, the documents (or print medium) are typically bent around several different rollers while they are being transported through the printing equipment. Bending the documents in this manner dramatically increases the likelihood of them getting jammed, which results in a significant productivity interruption because operator intervention is required to remove the jammed documents. Moreover, jammed documents can cause a series of sequential documents to be printed out of order, which causes an even greater interruption to productivity.
Another shortcoming is that the printer, collator, and other machines used in the printing system are not typically integrated. This lack of integration, or disjointedness, makes it difficult to control the various sections of the overall printing system. For example, if an error occurs in one part of the system, such as the printer, the system will typically stop running and a warning light will illuminate. The operator is then required to manually correct the error. Furthermore, independent machines are not easily configured into a customized printing system.
Other disadvantages concern the involvement by a system operator to detect and recover from errors that inevitably occur in such document-handling systems. While many known systems can detect an error, these systems typically do not provide the operator with information regarding the location and type of error that occurred. Moreover, even the more sophisticated systems typically cannot automatically recover from the error without user intervention.
Additionally, systems that use press-type printers are expensive to operate because imaging plates for each set of checks must be created and stored. Thus, the manufacturer must purchase material for the plates and related chemicals. The labor that is required to produce and install the imaging plates is also expensive.
Accordingly, there is a need for an improved printing system that overcomes the above-mentioned deficiencies, and that increases the accuracy and productivity of the overall document-handling process.
SUMMARY OF THE INVENTION
In one embodiment of the present invention, a modular printing system has a plurality of modules for processing sheets. One module is a collator module configured to retain the sheets. The collator module has a collator controller and sensors linked to the collator controller. The sensors are arranged to detect erroneously processed sheets. The collator controller is configured to generate an error signal in response to detection of an error. The collator module also includes a feed assembly for presenting the sheets. A printer module is configured to receive sheets presented by the feed assembly. The printer module includes a printer controller and sensors linked to the printer controller. The sensors are arranged to detect erroneously processed sheets and to generate an error signal in response to detection of an error. The module printing system also includes a system controller linked to the collator controller and the printer controller. The system controller is configured to generate and transmit scheduling signals thereby scheduling operation of the printing system for processing sheets. The system controller is further configured to generate error-recovery signals in response to error signals generated by the collator and printer controllers, thereby causing the modular printing system to automatically recover from printer and collator errors.
An alternative embodiment of the present invention includes an apparatus for registering a sheet being transported along a path. The sheet has a leading edge and the apparatus is configured to shift the sheet from a first position in which the leading edge is not substantially perpendicular to the path to a second position in which the leading edge is substantially perpendicular to the path. The apparatus has a first sensor arranged and configured to detect the leading edge and generate a first signal in response to detection of the leading edge. A second sensor is arranged and configured to detect the leading edge and generate a second signal in response to detection of the leading edge. First and second roller pairs are arranged and configured to feed the sheet along the path. First and second motors are arranged and configured to rotate the first and second roller pairs, respectively. Circuitry is linked to the first and second sensors and to the first and second motors. The circuitry is configured to receive the first and second signals, detect the time interval between reception of the first and second signals, and cause a speed differential between the first and second motors in response to detection of a time interval thereby shifting the sheet from the first position to the second position.
Another alternative embodiment of the present invention includes a sheet stacking apparatus for stacking sheets received from a printing assembly. The sheet stacking apparatus includes a support structure and an inverted conveyor assembly supported by the support structure. The inverted-conveyor assembly has a bottom surface and is configured to suspend the sheet received from the printing assembly against the bottom surface. The inverted-conveyor assembly transports the suspended sheets. A recirculating assembly is also supported by the support structure. The recirculating assembly is configured to separate the suspended sheet from the inverted-conveyor assembly thereby causing the sheets to fall. A platform is supported by the support structure. The falling sheets land on the platform and form a stack.
The above summary of the present invention is not intended to present each embodiment or every aspect of the present invention. This is the purpose of the figures and the associated description that follow.
REFERENCES:
patent: 3830590 (1974-08-01), Harris et al.
patent: 4962623 (1990-10-01), Francisco
patent: 5596416 (1997-01-01), Barry et al.
Brittle, Jr. Allan C.
Fiedler Lee B.
Gorham Kent
Peterson Jay R.
Richardson Michael M.
Check Technology Corporation
Gordon Paul P.
LandOfFree
Printing system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printing system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3091372