Press for imprinting and drying a fibrous web

Paper making and fiber liberation – Apparatus – Running or indefinite length product forming and/or treating...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S288000, C100S327000

Reexamination Certificate

active

06395136

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a press for increasing the dry solids content of a continuous web of fibrous material such as paper, and for imprinting the web with an imprinted pattern.
BACKGROUND OF THE INVENTION
Pressing a wet fibrous web in a press at an elevated temperature and at a high pressure has been found to result in a substantially increased dewatering rate as well as other favorable effects. The technique, which is variously called an impulse technique, impulse pressing, or impulse drying, is described in U.S. Pat. No. 4,324,613. The maximum pressures employed in the method described in the '613 patent lie within the range of 3-8 MPa. The '613 patent describes a conventional roll press formed by two cylindrical press rolls. A burner supplies heat to one of the rolls. The heat is supplied to the mantle surface of the roll immediately before the press nip. The patent states that the roll can have a surface layer with low capacity of heat transmission so that the surface layer thereby can maintain a high temperature.
The roll surface temperatures are between about 150° C. and about 350° C. However, because the press nip is short in length, the dwell time for the paper web in this type of press nip is only a few milliseconds, and this dwell time is too short for it to derive much of the potential advantage of pressing at high temperature under simultaneously applied high pressure. Therefore, it has also been proposed to utilize impulse drying in a heated shoe press, wherein the press nip is extended to approximately 20 to 30 cm in length, so that the dwell time for the heat treatment becomes considerably longer.
Regardless of whether accomplished in a roll nip or an extended press nip, however, impulse drying in a heated press nip generally involves subjecting the web to high temperature and high pressure simultaneously in order to give very high thermal flows to the web. A heat transferring member in the form of the mantle surface of a steel or cast iron roll, which transfers heat to the fibrous web, achieves high heat transfer rates within the range of about 2-8 MW/m
2
, which results in very high dewatering rates. The mechanism by which these high dewatering rates are achieved is not yet entirely clear. One theory that has been submitted is that when the vapor that develops near the surface of the heat transferring member closest to the fibrous web expands, the vapor helps to force substantially all remaining water in the fibrous web into the felt that is in contact with the fibrous web. Another theory is that the high dewatering rate is achieved by a combination of the reduced viscosity of the water caused by the high temperature, which makes it easier to force the water from the web, and a rapid evaporation of water from the web that occurs when the water heated to above 100° C. under pressure in the nip suddenly drops to atmospheric pressure when the web leaves the press nip.
U.S. Pat. No. 4,738,752 describes an extended, heated press nip in which the fibrous web encounters a hot surface defined by a rotatable press roll or by a metal belt that runs in a loop around a plurality of guide rolls. The press roll or belt is heated by a heating apparatus. The press roll can be formed to have an inner or first layer and an outer or second layer coaxially surrounding the first layer and having a coefficient of thermal conductivity that is larger than that of the first layer. The first layer may be of ceramics, while the second, external layer consists of metal and has a thickness of 0.0127-1.27 cm. The layers are in intimate contact with each other and together they constitute a unitary roll body.
When a roll of the above-described type is heated from the outside, one problem is that the external layer will become warmer than the layer or the layers located inward of the external layer. The external layer will therefore expand more than the inner layer and, because the external layer is joined with the inner layer, tensions will occur between the two layers. Even if the roll is homogeneous, differences in expansion and tensions between radially outer and radially inner portions of the roll will arise. In order to reduce the risk for damage of the roll caused by such difference in tensions, the initial heating of the roll must be done slowly. Another problem is that it is difficult to maintain the desired geometrical shape of the roll in the cross-machine direction because of the difficulties in maintaining the same temperature along the mantle surface of the roll and on the roll heads. Since the mantle surface and the heads cannot expand freely and independently of each other, large stresses occur between them and the mantle surface can become curved outwards or inwards in the cross-machine direction. Moreover, because the inner layer or portion of the roll will absorb some of the heat energy supplied for heating the outer layer or portion of the roll, the heating costs become high.
One disadvantage of using a metal belt as a heat-transferring device is that it must be arranged in a loop about at least two rolls, and hence this configuration requires considerable space. In order to clean the surface of the belt with a doctor blade, a counter roll must be arranged inside of the belt loop opposite the doctor blade. Another disadvantage is that the belt usually cannot be coated with layers in order to achieve certain properties of release and certain thermal conductivities.
In production of soft paper of relatively low basis weight, which for instance is used for making household paper, paper towels, and other hygiene products, it is generally desired to produce a bulk, i.e., a relationship between the volume and the weight of the paper, that is substantially higher than for other papers, as paper with high bulk has a desirable combination of softness and high power of absorption. In conventional production of paper, a coherent fibrous web is formed on a wire by dewatering a pulp suspension with initially very high water content. The moist web runs through a press section comprising one or more presses, each with at least one press nip, in which additional water is pressed out of the web. However, in a conventional wet press a certain re-wetting of the web inevitably occurs at the outlet of the press nip, and moreover the fibers are pressed together in a disadvantageous way such that a relatively flat and compact soft paper web with lower bulk than desired is obtained after the web has been dried in a drying section. In the manufacturing of paper, board, and cardboard, usually the drying section for drying the web has a large number of alternating drying cylinders and guide rolls around which the moist web runs. This large number of cylinders and rolls gives the paper machine a disadvantageous length.
In the manufacture of soft paper, usually a Yankee dryer has hitherto been used for the main drying of the web. The conditions at an Yankee dryer differ from those at a conventional wet press, in that the dewatering of the web is not accomplished primarily by pressing but rather is achieved chiefly by thermal drying of the web.
However, certain attempts have been made to manufacture soft paper with a bulk that is substantially increased from what is generally achievable using the conventional pressing and drying processes. For instance, U.S. Pat. No. 3,806,406 describes a procedure and a device for forming a high bulk soft paper web in which the wet web is transported on a felt through a press nip between a press roll and a heated Yankee dryer. Since compressing a fibrous web results in a lower bulk than what is desired for soft paper, the technique described in the '406 patent aims to reduce the surfaces of the fibrous web that are exposed to pressure in the press. Accordingly, the Yankee dryer has a mantle surface with alternately raised and lowered surface portions, which constitute a relief pattern for placing against the web. Thus, only the parts of the web that are in contact with the raised surface portions are compressed in the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Press for imprinting and drying a fibrous web does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Press for imprinting and drying a fibrous web, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Press for imprinting and drying a fibrous web will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.