Positive photoresist layer and a method for using the same

Radiation imagery chemistry: process – composition – or product th – Diazo reproduction – process – composition – or product – Composition or product which contains radiation sensitive...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S191000, C430S192000, C430S193000, C430S270100, C430S326000, C427S123000, C427S145000, C427S425000, C427S426000

Reexamination Certificate

active

06338930

ABSTRACT:

BACKGROUND OF THE INVENTION
(a) Field of the Invention
The present invention relates to a positive photoresist layer and a method for manufacturing fine circuit patterns such as liquid crystal display circuits or semiconductor integrated circuits and, using the same. More particularly, it is related to a positive photoresist layer that can be prepared easily and environmentally friendly, as well as obtaining good characteristics.
(b) Description of the Related Art
For producing fine circuit patterns such as those used in liquid crystal display (LCD) circuits or semiconductor integrated circuits, a photoresist composition is uniformly coated or applied on an insulator layer or a conductive metal layer on a substrate. The coated or applied substrate is then exposed to some form of radiation, such as ultraviolet light, electrons, or X-ray, and the exposed substrate is developed to produce a desired pattern. The developed substrate is etched with a mask to remove the insulator layer or the conductive metal layer and the residual photoresist layer is removed to complete the transfer of the tiny pattern onto the substrate surface. Photoresist compositions are classified into a negative type and a positive type depending on whether the exposed areas of photoresist coating become insoluble or soluble. Recently, positive type photoresist compositions have been mainly used, because the positive type photoresists can form smaller patterns than the negative type photoresists.
The photoresist layer preparation is critical and important and determines the production line output. The production line depends on the properties of photoresist compositions. The properties include the photosensitivity, contrast, resolution, resist adhesion, retention, and safety.
Photosensitivity refers to how fast the photoresist's solubility changes. A high photosensitivity is important for a photoresist, particularly in applications that requires a number of exposures. Examples are generating multiple patterns by a repeated process, or employs light of reduced intensity, such as a projection exposure technique that passes light through a series of lenses and monochromatic filters.
Contrast refers to a comparison of the percentage of film loss in the exposed development area with the percentage of film loss on the unexposed area. Ordinarily, the substrate is developed until the coating on the exposed area is completely dissolved away, and thus, development contrast can be determined simply by measuring the percentage of the film coating loss in the unexposed areas when the exposed coating areas are removed entirely.
Photoresist resolution refers to the capability of how finely a mask utilized during exposure can engrave a pattern. In many industrial applications, particularly in manufacturing LCDs or semiconductor integrated circuits, a photoresist is required to provide a high degree of resolution for very small line and space widths of &mgr; or less.
Because solvents in the photoresist composition are mostly evaporated, the odor or the safety of the evaporated solvent has a great impact on the overall procedure.
Various attempts have been made in the prior art to improve photoresist layer preparation. For example, in U.S. Pat. No. 4,115,128, an organic acid cyclic anhydride was added to the phenolic resin and naphthoquinone diazide sensitizer to increase photosensitivity. Korean Patent Publication No. 94-7775 discloses that a novolak resin, an o-quinone diazide sensitizer, and a propylene glycol alkyl ether acetate solvent are mixed to prepare a photoresist composition and the photoresist composition is coated on a substrate. Next, 70 to 99% of the solvent is evaporated. After removing the solvent, the substrate is exposed to some form of radiation, such as ultraviolet light, electrons, or X-rays. Finally, the composition is removed from the exposed area by using an alkaline developing solution.
Various solvents for improving physical properties of the photoresist composition and work safety, have been developed. For example, ethylene glycol mono ethyl ether acetate, ethyl lactate or propylene glycol mono ethyl ether acetate may be used as solvent. However, the photoresist composition including ethyl lactate shows poor substrate adhesion and difficulty in coating uniformly on a substrate. Ethylene glycol mono ethyl ether acetate or propylene glycol mono ethyl ether acetate is toxic and has an unpleasant odor. Accordingly, there is still a need for photoresist compositions that are suitable for various industrial applications, without sacrificing any one of the properties of photosensitivity, contrast, resolution, or solubility of polymer resin.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a positive photoresist layer that can improve properties such as good photosensitivity, retention, contrast, resolution, and substrate adhesion of the photoresist layer.
It is another object to provide a positive photoresist layer that is not toxic to humans, without unpleasant odor, and is environmentally friendly.
It is still another object to provide a positive photoresist layer that can reduce the photoresist layer production time and improve work efficiency.
These and other objects may be achieved by a method of the present invention. In this method, a photoresist composition is drop-wise applied on an insulator layer or a conductive metal layer formed on a substrate. The photoresist composition includes a polymer resin, a sensitizer for changing solubility of the photoresist layer when exposed, and a solvent. The resulting substrate is rotated at the speed of 1,250 to 1,350 revolution per minute (rpm) for 4.2 to 4.8 seconds. As a result, the composition is coated on the substrate. The coated substrate is then dried and the dried substrate is exposed to some form of radiation. Next, the exposed portion is removed by using an alkaline developing solution. The solvent preferably includes 3-methoxybutyl acetate and 4-butyrolactone, or includes 3-methoxybutyl acetate, 2-heptanone, and 4-butyrolactone.
DETAILED DESCRIPTION OF THE INVENTION
A photoresist composition for producing a photoresist layer generally includes a polymer resin, a sensitizer, and a solvent. The photoresist composition of the present invention can be applied to a substrate by any conventional method used in the photoresist art, including dipping, spraying, whirling, and spin coating. In the present invention, the photoresist composition is drop-wise applied to a substrate and the substrate is rotated at the speed of 1,250 to 1,350 rpm for 4.2 to 4.8 seconds. As a result, the composition is uniformly coated on the substrate. Furthermore, the photoresist solution can be adjusted by changing the percentage of solid contents in order to provide a coating of the desired thickness given the type of spinning equipment utilized and the spinning process. Suitable substrates include silicon, aluminum, silicon dioxide, doped silicon dioxide, silicon nitride, tantalum, copper, polysilicon, ceramics, and aluminum/copper mixtures or polymeric resins.
The substrate coated with photoresist composition is heated at 20° C. to 100° C. to perform a soft-baking step. This step permits the solvent evaporation without pyrolysis of a solid component in the photoresist composition. Generally, it is preferable that the solvent concentration of the solvent is reduced to minimum by the soft-baking step. Thus, the substrate is soft-baked until the solvent is mostly evaporated and a thin coating layer of photoresist remains on the substrate. The photoresist composition used in the present invention is extremely sensitive to the temperature. Thus it is desirable to perform the process in one pre-heating step, which allows the photoresist to be stripped without defects in the following steps.
Next, the substrate coated with the photoresist layer is selectively exposed to light, particularly, ultraviolet light using a suitable mask to obtain a desirable pattern. The illuminance of an ultraviolet lamp is preferably 100 to 103 mW and the exposure time

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Positive photoresist layer and a method for using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Positive photoresist layer and a method for using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positive photoresist layer and a method for using the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2853402

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.