Polyimide coating process with dilute TMAH and DI-water...

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Insulative material deposited upon semiconductive substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S780000, C438S782000, C427S240000, C427S385500

Reexamination Certificate

active

06171980

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to semiconductor device fabrication and, more particularly, to a method and apparatus for imparting a coating material to the surface of a semiconductor wafer and for efficiently removing excess amounts of the coating material and preventing excess coating material from adhering to the edges and back side of the wafer once the wafer has been coated.
2. Description of the Related Art
As is well known to those experienced in the art of semiconductor device fabrication, polyimide films have proven useful for a number of purposes, particularly for planarization of the semiconductor device surface in anticipation of photolithographic patterning and a passivation stress buffer. Polyimide films, which consist of polyimide resins in a solvent such as NMP (n-methyl-2-pyrolidone), demonstrate excellent thermal stability and chemical resistance, as well as acceptable dielectric properties. Consequently, polyimide films can be left permanently in place on the device, and are often used as a substitute for SiO
2
or PSG (phososilicate glass) layers. The films can be applied in layers on the order of 1 to 40 &mgr;m thickness by conventional photoresist spinning techniques. Upon application, polyimide films flow around projections and steps in the device surface, thereby contributing to planarization. The film contour becomes permanent upon curing at about 300° C. In use, the degree of planarization effected by polyimide coating may be controlled by the viscosity of the film, that is, by the ratio of resin to solvent, and by the film thickness.
In a conventional semiconductor device fabrication process, a polyimide coating step takes place in a coater spin cup. The semiconductor wafer is supported inside the cup by a spin chuck. A dollop of polyimide is dispensed on the top surface of the wafer, and the wafer is rotated through rotation of the spin chuck shaft, while the coater spin cup remains essentially stationary. As the wafer rotates, polyimide is more or less uniformly dispensed over the surface of the wafer, with excess polyimide material centrifugally expelled off the circumferential perimeter of the wafer. The wafer then is subjected to a backrinse with a solvent such as propylene glycol monomethyl ether acetate (PGMEA). As an undesired side effect of the coating process, excess polyimide material is deposited on the edges of the wafer and accumulates in the coater spin cup, thereby requiring cups to be periodically changed out after, approximately, 100 to 150 coating steps. In addition, because polyimide mixed with PGMEA results in a viscous fluid that cannot be piped into a bulk drain, the polyimide must be evacuated to a waste drain tank.
Accordingly, what is desired is an improved polyimide coating step in a semiconductor device fabrication process, wherein the improved step mitigates the need for frequent changes in the coater spin cup, removes wafer-edge and back side deposits and provides more efficient and convenient disposal of excess polyimide.
SUMMARY OF THE INVENTION
The above and other objects, advantages and capabilities are realized in one aspect of the invention by a method of coating a semiconductor wafer that is characterized by respective first and second substantially planar surfaces. The wafer is supported in a coater cup by a spin chuck that is disposed at or near the center of the first surface. After a coating material is deposited over at least a portion of the second surface, the wafer is spun, via rotation of the spin chuck shaft, so as to distribute the coating material over remaining portions of the second surface, and thereby cause excess coating material to be centrifigually expelled from the perimeter of the wafer. A developing fluid is injected on the back side of the wafer and is also centrifugally expelled off the wafer into the coater cup so that the excess coating material mixes with the developing fluid. Subsequently, a rinsing fluid is injected into the cup at a position proximal to the first surface so that developing fluid may be rinsed from the first surface. In a preferred embodiment of the invention, the coating material is polyimide, the developing fluid is dilute tetramethyl ammonium hydroxide (TMAH), and the rinsing fluid is DI water.
Another aspect of the invention is realized by an apparatus for coating a first surface of a semiconductor wafer. The apparatus includes a coater cup in which is disposed a spin chuck consisting essentially of a platen portion for supporting the semiconductor wafer at the center of the second surface and a shaft portion extending downwardly from the platen through the bottom of, but separate from, the coater cup. The apparatus also includes first and second nozzles, extending into the coater cup through the bottom portion, for respectively injecting a rinsing fluid and a developing fluid into the coater cup at predetermined intervals.


REFERENCES:
patent: 5238878 (1993-08-01), Shinohara
patent: 5893004 (1999-04-01), Yamamura

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyimide coating process with dilute TMAH and DI-water... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyimide coating process with dilute TMAH and DI-water..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyimide coating process with dilute TMAH and DI-water... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555020

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.