Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Insulative housing or support
Reexamination Certificate
2001-08-03
2003-04-08
Talbott, David L. (Department: 2827)
Semiconductor device manufacturing: process
Packaging or treatment of packaged semiconductor
Insulative housing or support
C438S111000, C438S112000, C438S123000, C438S126000
Reexamination Certificate
active
06544820
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to integrated circuit lead frames and methods of production thereof. In particular, this invention relates to plastic lead frames with a conductive coating or material contained therein used for packaging integrated circuits and methods of manufacturing the same.
2. State of the Art
Integrated circuit (IC) chips are enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection to printed circuit boards. During a manufacturing process, the IC chip is typically attached to a die paddle of a conventional lead frame or suspended from the lead fingers of a leads-over-chip (LOC) lead frame using an adhesive such as epoxy or double-sided tape, and subsequently encapsulated with a dense and rigid plastic by a transfer molding process. In essence, the lead frame forms the backbone of the molded plastic IC package.
Lead frames typically perform many functions such as: (1) a holding fixture that indexes with tool-transfer mechanisms as the package proceeds through various assembly operations, (2) a dam that prevents plastic from rushing out between leads during the molding operation, (3) a chip attach substrate, (4) a support matrix for the plastic, and (5) an electrical and thermal conductor from chip to board.
Traditionally, lead frames are fabricated from a strip of sheet metal by stamping or chemical milling operations. There are many different metal alloy compositions which are commercially available for producing lead frames. For example, Rao R. Tummala and Eugene J. Rymaszewski, “Microelectronics Packaging Handbook,” Table 8-4, 1989, provides 16 different alloys available from 9 different manufacturers. Lead frame material selection depends on many factors such as cost, ease of fabrication, strength, thermal conductivity, and matched coefficient of thermal expansion (CTE). A close match of CTE between the silicon die and the lead frame is required to avoid chip fracture from different expansion rates.
The most widely used metal for lead frame fabrication is Alloy 42 (42% Nickel-58% Iron). Alloy 42 has a CTE near silicon and good tensile strength properties. The disadvantage of Alloy 42 is that it has low thermal conductivity. Since the lead frame is the main conduit by which heat flows from the chip to the environment and printed circuit board, this can have a profound effect on the package thermal resistance after prolonged device operation.
A layered composite strip, such as copper-clad stainless steel, was developed to emulate the mechanical properties of Alloy 42 while increasing thermal conductivity. However, copper-clad stainless steel is somewhat more expensive to manufacture than Alloy 42. When manufacturing copper-clad stainless steel lead frames, the cladding is accomplished by high-pressure rolling of copper foil onto a stainless steel strip, followed by annealing the composite to form a solid-solution weld. While copper alloys provide good thermal conductivity and have a CTE near that of low-stress molding compounds, there is a substantial CTE mismatch with respect to silicon.
While numerous alloys have been developed to solve problems with thermal conductivity, CTE mismatch, and strength, other important factors, such as ease of fabrication and cost, have not improved as readily.
Conventional methods for making lead frames for integrated circuit devices are described in U.S. Pat. No. 3,440,027. The use of a plastic support structure in a method of forming metal lead frames is described in U.S. Pat. No 4,089,733 (hereinafter the “'733” patent). The plastic support structure of the '733 patent solves the problem of deformed and misaligned lead fingers resulting from stress during the bonding process by supporting the lead fingers with a plastic structure. However, the '733 patent requires a metal lead frame in addition to the plastic support structure with its attendant costs. A method of manufacturing multi-layer metal lead frames is disclosed in U.S. Pat. No. 5,231,756 (hereinafter the “'756” patent). The '756 patent provides an improvement in aligning power and ground planes for use in a multi-layer lead frame where such planes are necessary. However, the number of steps required to manufacture such multi-layer lead frames will not solve the problem of decreasing costs. In short, none of the related art appears to disclose methods of producing low-cost lead frames made from materials not structurally based on metal.
Since packaged ICs are produced in high volumes, a small decrease in the cost per packaged IC can result in substantial savings overall. Accordingly, there is a need in the industry for a low cost plastic lead frame with suitable characteristics for IC packaging.
BRIEF SUMMARY OF THE INVENTION
The present invention comprises plastic lead frames coated with conductive materials or having conductive materials therein suitable for use in IC packaging, and methods for fabricating the same. The invention may be used in the production of ICs.
By using plastic as the structural base for a lead frame, many costs associated with the manufacture of metal lead frames can be eliminated. For instance, plastic lead frames can be injection molded or stamped and then coated with an intrinsic conductive polymer. Furthermore, plastic is intrinsically less expensive as a bulk material than metal alloys typically used in lead frame construction.
Once the lead frame is formed, it can be used in either the conventional die attach and connect process or in a LOC process. In the conventional process, the die is adhesively attached to a die paddle using epoxy or double-sided tape, followed by wire bonding where die pads are connected to lead fingers from the lead frame. In a LOC process, the die could be attached to the lead frame fingers by double-sided adhesive tape followed by wire bonding. Alternatively, the LOC process might include direct connection between the die pads and the LOC lead frame fingers with a conductive epoxy or Z-axis conductive material using methods common in the art.
In the preferred embodiment of the invention, a plastic lead frame coated with an intrinsically conductive polymer is provided. The plastic lead frame structure can be formed by injection molding, stamping or etching from a sheet of plastic or polymer material. This plastic lead frame structure is then coated with a conductive polymer by dipping in a solution or lacquer composed of a polyaniline such as the commercially available product Ormecon™. By controlling the polyaniline coating process, precise layers with known thicknesses can be produced. The resulting low cost lead frame has a conductive layer surrounding the plastic structure. Moreover, the CTE of silicon, conductive polymer, and molding compounds is very nearly matched.
Another embodiment of the present invention is a composite plastic lead frame formed of a conventional polymer intermixed with a conductive polymer. The composite plastic lead frame structure is formed by injection molding, stamping or etching from a sheet of the composite plastic/conductive polymer material. The CTE of the lead frame is well matched to that of silicon as in the preferred embodiment; however, increased quantities of polyaniline required to provide sufficient conductivity may consequently increase cost relative to the preferred embodiment.
Additional advantages of both the above embodiments are transparency, corrosion resistance, and oxidation resistance. Polyaniline is transparent. By using transparent plastic or polymer in the lead frame structure, ultraviolet (UV), or other light source, cure of the die attach material becomes possible. This is particularly advantageous in an automated production environment. Furthermore, both of the above lead frame embodiments are nonmetallic and thus less susceptible to corrosion or oxidation.
The inventive plastic lead frames solve the problem of reducing cost while maintaining characteristics necessary for use in commercial production of IC pack
Jiang Tongbi
King Jerrold L.
Talbott David L.
TraskBritt
Zarneke David A.
LandOfFree
Plastic lead frames for semiconductor devices, packages... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plastic lead frames for semiconductor devices, packages..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plastic lead frames for semiconductor devices, packages... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015070