Pigment epithelium-derived factor: characterization, genomic...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S350000

Reexamination Certificate

active

06319687

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to a neurotrophic, neuronotrophic and gliastatic protein. More specifically, this invention relates to the biological properties of a protein known as pigment epithelium-derived factor (PEDF) and recombinant forms of the protein. This invention also relates to a truncated version of PEDF that is referred to as rPEDF. In addition to PEDF and rPEDF and functionally equivalent proteins, this invention relates to nucleic acids that encode rPEDF, and fragments thereof, to vectors comprising such nucleic acids, to host cells into which such vectors have been introduced, and to the use of these host cells to produce such proteins.
BACKGROUND OF THE INVENTION
Pigment epithelium-derived factor, otherwise known as pigment epithelium differentiation-factor, was identified in the conditioned medium of cultured fetal human retinal pigment epithelial cells as an extracellular neurotrophic agent capable of inducing neurite outgrowth in cultured human retinoblastoma cells (Tombran-Tink et al. (1989)
Invest. Ophthalmol. Vis. Sci
., 30 (8), 1700-1707). The source of PEDF, namely the retinal pigment epithelium (RPE), may be crucial to the normal development and function of the neural retina. A variety of molecules, including growth factors, are synthesized and secreted by RPE cells. Given that the RPE develops prior to and lies adjacent to the neural retina, and that it functions as part of the blood-retina barrier (Fine et al. (1979)
The Retina, Ocular Histology: A Text and Atlas
, New York, Harper & Row, 61-70), the RPE has been implicated in vascular, inflammatory, degenerative, and dystrophic diseases of the eye (Elner et al. (1990)
Am. J. Pathol
., 136, 745-750). In addition to growth factors, nutrients and metabolites are also exchanged between the RPE and the retina. For example, the RPE supplies to the retina the well-known growth factors PDGF, FGF, TGF-&agr;, and TGF-&bgr; (Campochiaro et al. (1988)
Invest. Ophthalmol. Vis. Sci
., 29, 305-311; Plouet (1988)
Invest. Ophthalmol. Vis. Sci
., 29, 106-114; Fassio et al. (1988)
Invest. Ophthalmol. Vis. Sci
., 29, 242-250; Connor et al. (1988)
Invest. Ophthalmol. Vis. Sci
., 29, 307-313). It is very likely that these and other unknown factors supplied by the RPE influence the organization, differentiation, and normal functioning of the retina.
In order to study and determine the effects of putative differentiation factors secreted by the RPE, cultured cells have been subjected to retinal extracts and conditioned medium obtained from cultures of human fetal RPE cells. For example, U.S. Pat. No. 4,996,159 (Glaser) discloses a neovascularization inhibitor recovered from RPE cells that is of a molecular weight of about 57,000 +/−3,000. Similarly, U.S. Pat. Nos. 1,700,691 (Stuart), U.S. Pat. No. 4,477,435 (Courtois et al.), and U.S. Pat. No. 4,670,257 (Guedon born Saglier et al.) disclose retinal extracts and the use of these extracts for cellular regeneration and treatment of ocular disease. Furthermore, U.S. Pat. No. 4,770,877 (Jacobson) and U.S. Pat. No. 4,534,967 (Jacobson et al.) describe cell proliferation inhibitors purified from the posterior portion of bovine vitreous humor.
PEDF only recently has been isolated from human RPE as a 50-kDa protein (Tombran-Tink et al. (1989)
Invest. Ophthalmol. Vis. Sci
., 29, 414; Tombran-Tink et al. (1989)
Invest. Ophthalmol. Vis. Sci
., 30, 1700-1707; Tombran-Tink et al. (1991)
Exp. Eye Res
., 53, 411-414). Specifically, PEDF has been demonstrated to induce the differentiation of human Y79 retinoblastoma cells, which are a neoplastic counterpart of normal retinoblasts (Chader (1987)
Cell Different
., 20, 209-216). The differentiative changes induced by PEDF include the extension of a complex meshwork of neurites, and expression of neuronal markers such as neuron-specific enolase and neurofilament proteins. This is why the synthesis and secretion of PEDF protein by the RPE is believed to influence the development and differentiation of the neural retina. Furthermore, PEDF is only highly expressed in undifferentiated human retinal cells, like Y79 retinoblastoma cells, but is either absent or down regulated in their differentiated counterparts. Recently, it was reported that PEDF mRNA is expressed in abundance in quiescent human fetal W1 fibroblast cells and not expressed in their senescent counterparts (Pignolo et al., 1993).
Further study of PEDF and examination of its potential therapeutic use in the treatment of inflammatory, vascular, degenerative, and dystrophic diseases of the retina and central nervous system (CNS) necessitates the obtention of large quantities of PEDF. Unfortunately, the low abundance of PEDF in fetal human eye and furthermore, the rare availability of its source tissue, especially in light of restrictions on the use of fetal tissue in research and therapeutic applications, make further study of PEDF difficult at best. Therefore, there remains a need for large quantities of PEDF and equivalent proteins. Accordingly, the obtention of nucleic acids that encode PEDF and equivalent proteins, and the capacity to produce PEDF and equivalent proteins in large quantities would significantly impact upon the further study of PEDF, its structure, biochemical activity and cellular function, as well as the discovery and design of therapeutic uses for PEDF.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide nucleic acids encoding for PEDF and functional fragments thereof, vectors comprising such nucleic acids, host cells into which such vectors have been introduced, and a recombinant method of producing PEDF and equivalent proteins. It is another object of the present invention to obtain the genomic DNA sequences encoding for PEDF, identify the intron-exon junctions, the chromosome location in the human genome, and to provide the regulatory regions of the gene which flank the genomic sequence. The present invention relates to such genomic PEDF DNA.
It is a further object of the present invention to provide structural characteristics of PEDF and its similarities to the serpin family of serine protease inhibitors, both structural and functional.
It is yet another object of the present invention to provide PEDF and equivalent proteins produced in accordance with such a recombinant method, wherein the PEDF and equivalent proteins so produced are free from the risks associated with the isolation of PEDF from naturally-occurring source organisms.
Another object of the present invention is to provide nucleic acids for a truncated version of PEDF, referred to as rPEDF, and equivalent proteins, vectors comprising such nucleic acids, host cells into which such vectors have been introduced, and a recombinant method of producing rPEDF and equivalent proteins. It is also an object of the present invention to provide rPEDF and equivalent proteins produced in accordance with such a recombinant method.
It is a further object of the invention to provide a PEDF protein having neuronotrophic and gliastatic activity. The neuronotrophic activity is seen in the prolonged survival of neuronal cells. The gliastatic activity is observed in the inhibition of growth of glial cells in the presence of PEDF or active fragment thereof. It is another object of the invention to provide methods for treating neuronal cells so as to promote/enhance neuron survival and prevent growth of glial cells, comprising treating such cell populations with an effective amount of PEDF or an active fragment thereof.
It is yet another object of the present invention to provide antibodies which specifically recognize PEDF, either monoclonal or polyclonal antibodies, raised against native protein, the recombinant protein or an immunoreactive fragment thereof. It is an object of the invention to provide methods for detecting PEDF by immunoassay using such antibody preparation in determining aging and/or other degenerative diseases. Another object of the invention relates to a method of using PEDF antibodies to specifically inhibit PEDF activity.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pigment epithelium-derived factor: characterization, genomic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pigment epithelium-derived factor: characterization, genomic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pigment epithelium-derived factor: characterization, genomic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2613980

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.