Surgery – Diagnostic testing
Reexamination Certificate
1999-04-15
2002-12-17
Nasser, Robert L. (Department: 3736)
Surgery
Diagnostic testing
C128S903000, C600S508000
Reexamination Certificate
active
06494829
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a physiological sensor device or sensor array for attachment to a mammalian subject in order to obtain data about one or more physiological parameters of the subject. In particular, the invention relates to a physiological in sensor device in the form of a patch attachable to the chest of a human subject to enable sensing of physiological data such as electro-cardiographic data and/or respiration data.
2. Description of the Prior Art
The prior art includes U.S. Pat. No. 3,943,918 to Lewis which discloses an ECG signal sensing and transmitting device for use in the care of medical patients requiring monitoring of cardiac functions. The device disclosed is a single use, disposable unit consisting principally of a foam pad having a pair of circular electrodes in one face of the rectangular foam block. The block comprises electrical circuitry which transmits an RF signal to a receiver which is required to be within 100 feet of the patient. Subsequent filtering and amplification of the signal takes place at a monitoring station comprising a receiver and the like. The device is disposable after one use but, as a result, is somewhat crude and only comprises two electrodes for very basic ECG measurements.
U.S. Pat. No. 4,121,573 discloses a chest sensor for monitoring cardiac rhythms of a patient using a pair of spaced circular electrodes mounted on a foam pad. Electrical connectors between the electrodes and electronic circuitry for acquiring and transmitting cardiac rhythm signals is provided by independent electrical leads or wires. The circuitry and wires are located on the rear surface of a first layer of foam and held in position by a second layer of foam. Accordingly, a fairly deep configuration of layers of foam, electronic circuitry and electrodes is provided in this rather crude two electrode device.
U.S. Pat. No. 4,957,109 discloses an electrode array for use in generating electrocardiographic signals for a patient. The array comprises ten different electrode regions (comprising pairs of semicircular electrodes) for attachment to different parts of the human body. The electrodes are interconnected to an output connector for attachment to signal processing apparatus. The electrode sensors and electrical conductors between the electrodes and the output conductor are formed on a large flexible circuit board having a large dentritic or tree-like configuration to enable location of the electrodes at appropriate positions on the human body for standard twelve lead diagnostic electrocardiogram studies. A digital infra red signal having multiplexed data from each of the ECG electrodes is transmitted to a remote location in use. While fairly sophisticated, this arrangement only contemplates point-in-time 12 lead ECG studies and is not disposable.
U.S. Pat. No. 5,634,468 discloses a sensor for physiological monitoring of a patient, consisting of a rectangular patch having a central structural member formed of MYLAR™ encased in an adhesive hydrogel. One side of the sensor has four circular electrodes for contacting the patient. The electrodes are wired to an electronic package on the opposite side of the structural member. The electronics package is adapted to receive ECG data and transmits the data to a monitoring unit. However, this small sensor is limited to measuring ECG signals.
U.S. Pat. No. 5,353,793 discloses sensor apparatus for making ECG measurements comprising a band which passes entirely round a patient's chest. The chest band can have optional shoulder straps and an optional abdominal band. Electrodes are positioned around the inner circumferential surface of the band for monitoring respiration, pulse and ECG signals. The ECG electrodes are simple conductive sensors in electrical contact with the skin. The pulse and respiration sensor comprises a tension sensor consisting of a piezoelectric element A minimum of 7 ECG sensors is provided but up to 18 can be spaced around the band. Two or more of the piezoelectric sensors can be provided in a single chest band. The various sensors are connected by cabling and accordingly the apparatus as a whole is quite bulky. Also, the data from the sensors is transferred to a remote location by wire via a connector. While the possibility of a radio link is mentioned, there is no detail as to how this would be achieved cost effectively to allow for disposability and yet ensure accurate and efficient data transfer from the various sensors.
International patent specification WO 94/01039 discloses physiological monitoring apparatus having a strip assembly for attachment to a patient's chest. The strip comprises a series of nine electrically conductive electrode sensors for attachment to the precordial region of a patient's chest for obtaining ECG data The strip only measures ECG data which is wirelessly transmitted on a multiplexed analog signal which modulates an RF carrier signal for transmission to a remote data analysis station which can be up to 50 to 100 meters from the strip. The emphasis here is to provide a complete ECG study of a patient using a portable system, and accordingly, there is no discussion of disposability and efficient communication of data from different types of sensors other than ECG.
SUMMARY OF THE INVENTION
An object of the invention is to avoid or at least mitigate the problems of the prior art. In particular, the invention seeks to provide an improved physiological sensor device which enables accurate and or continuous collection of various types of physiological data using a relatively inexpensive electrical system which can viably be disposed of after a single use over a 24 hour period. A further object of the invention is to provide a device which is able to collect a variety of types of physiological data, such as ECG, respiration, motion and/or temperature for example, while still being relatively inexpensive to manufacture. A yet further object is to use a single sensor for acquiring more than one type of physiological data.
Accordingly, a first aspect of the invention provides a portable and disposable physiological sensor device for attachment to a mammalian subject comprising physiological sensors for sensing the subject's physiological parameters, such as ECG or respiration, and a controller operably in communication with the physiological sensor for communicating a signal representative of the sensed physiological parameter to an output which operably transmits the signal to a remote location.
Preferably, at least two physiological sensors are provided, each for sensing different ones of the subject's physiological parameters. The controller is operably in communication with the physiological sensors so as to communicate a signal comprising data representative of both the sensed physiological parameters to an output transmitter which operably transmits the signal to a remote location. Preferably, the controller interleaves the data from both the physiological sensors into a serial output signal.
In a preferred embodiment, the controller of the invention comprises an application specific integrated circuit, and control circuits which are designed to have components communicate the signals between the sensor and output. Preferably, the output enables wireless transmission of the signal to a remote location, for example, using a digitally modulated electromagnetic carrier frequency such as a low frequency RF carrier for inductive coupling with a receiver. Also, the controller samples an analog signal from the physiological sensor and converts the sampled signal into a digital signal using an analog to digital converter.
Alternatively, a first and second respiration sensor may be provided, one of which preferably comprises a bend sensor locatable, for example, on the subject's chest and preferably over or adjacent the subject's pectoral muscle.
In accordance with the invention, the output preferably transmits a transmission signal comprising a data signal from two or more physiologic
Harry Andrea J.
Johnson Paul
Kumar Harpal S.
Mullarkey William J.
New, Jr. William
Astorino Michael
Nasser Robert L.
Nexan Limited
Woodcock Washburn Kurtz Mackiewicz & Norris LLP
LandOfFree
Physiological sensor array does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Physiological sensor array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physiological sensor array will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2957514