Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making
Reexamination Certificate
2001-06-20
2003-01-28
Ashton, Rosemary (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Imaging affecting physical property of radiation sensitive...
Radiation sensitive composition or product or process of making
C430S270100, C430S281100, C522S027000, C522S029000
Reexamination Certificate
active
06511789
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to photosensitive polyimide precursor compositions useful for forming relief structures on silicon, glass, ceramic, or polymer substrates bearing copper or silver circuitry. The photosensitive compositions according to this invention are especially suitable for applications in microelectronics.
BACKGROUND TO THE INVENTION
Negative tone photosensitive polyimide precursors based on polyamic esters containing radiation sensitive groups in the ester moiety are well known (U.S. Pat. Nos. 4,040,831, 4,548,891, 6,010,825). When these polymers are formulated with a radical photoinitiator and a cross-linking agent in a suitable solvent, the resulting material may be processed as a negative tone photoresist. The photoimaging and processability of these resist compositions may be modified by adding to the formulation one or more compounds such as adhesion promoters, photosensitizers, dyes, leveling agents, and viscosity stabilizing agents. Many formulations of this type are known and are widely used in the microelectronic industry. Microelectronic applications include, but are not limited to, stress relief layers for packaged microelectronic devices, protective coatings, alpha particle barrier coatings, and as dielectric layers. Substrate materials that have been processed with photosensitive polyimide coatings include silicon device wafers, ceramics, glass, flexible polymer-metal foils, and the like.
In use, the polyamic ester formulations are coated as a film on a substrate using any of a variety of coating methods including spin, dip, spray, roller, meniscus, extrusion, and curtain coating. The resulting wet film is heated at temperatures ranging from 50 to 150° C. to provide a tack-free or “softbaked” film. The softbaked film is then exposed to the action of actinic rays at wavelengths ranging from 350 to 450 nanometers through a photomask. Such actinic rays are commonly obtained from the mercury lamp whose most useful rays are the i-line at 365 nanometers and the g-line at 436 nanometers. The actinic rays interact with the photoinitiator in a photochemical reaction to produce an organic radical that initiates a radical cross-linking reaction of the unsaturated groups of the polyamic ester and the crosslinking agent. The products of this reaction have decreased solubility in certain solvents. Thus, treatment of the exposed film with an appropriate solvent results in the removal of unexposed areas and the retention of exposed areas to form a relief pattern of the mask in the film. After image development, the patterned polyamic ester film is converted to a patterned polyimide film by the means of applying heat at temperatures ranging from 200° C. to 450° C. for a period of time ranging from thirty minutes to six hours.
The efficacy of the photochemical cross linking reaction in producing an insoluble product is known to be adversely affected by the presence of chemicals that react with the radicals produced by the photoinitiator in such a manner as to prevent or inhibit the cross linking of the polymer. When crosslinking inhibition occurs, the relief image is damaged or lost during the image development process and film loss during development is high. A well-known example of such an inhibitor is the oxygen molecule, which inhibits the photocrosslinking of polyamic acrylate esters and is well known as an inhibitor toward the radical polymerization of acrylate and acrylate derivatives. Inhibition of crosslinking also occurs when photosensitive polyimide precursor formulations containing certain organotitanocene photoinitiators are processed on substrates wherein copper and silver metal layers are present. Lowering the softbake temperature of the spin applied coating can lessen the undesirable inhibition effects on copper and silver layers. However, this approach decreases pattern resolution and results in unacceptably fast photospeeds and increased film loss. The increased industrial use of copper and silver metal as the conductor in microelectronic devices, sensors, packages, and flexible circuit elements has created a need for formulations with improved performance where copper and silver layers are present.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a negative working photosensitive polyimide precursor formulation whose photoimaging function is not inhibited when the composition is applied to and processed on copper or silver bearing substrates. The photosensitive composition of this invention consists of a polyamic ester polymer containing ethylenically unsaturated groups, a photocrosslinking additive, a photoinitiator, a metal inhibitor, a polymerization inhibitor, and a solvent. Optionally and in addition to the aforementioned components, the composition may contain one or more photosensitizers, adhesion promoters, and dyes.
The photosensitive compositions can be used in the manufacture of microelectronic devices and in electronic applications such as thermal and mechanical stress buffer coatings, alpha particles barrier coatings, interlayer dielectric films, and as patterned engineering plastic layers.
DETAILED DESCRIPTION OF THE INVENTION
One aspect of the present invention is to provide a photosensitive polyimide precursor composition comprising:
(i) 20-50 parts by weight of a polyamic ester polymer (C) obtained by the polycondensation of a diester-diacid chloride compounds (A) with a diamine compound (B).
(ii) 1-4 parts by weight of a photoinitiator (D).
(iii) 3-10 parts by weight of a photocrosslinkable additive (E).
(iv) 0.005-1 parts by weight of a metal inhibitor (F).
(v) 0.01-1 parts by weight of a polymerization inhibitor (G).
(vi) 44-76 parts by weight of a solvent (H).
Optionally and in addition to components A and D through H inclusively, the composition may contain one or more of the following components:
(vii) 0.1-2.0 parts by weight of one or more photosensitizer compounds (I).
(viii) 0.05-2.0 parts by weight of an adhesion promoting compound (J).
The polyamic ester polymer (C) has a number average degree of polymerization of 5 to 100 and is synthesized by the polycondensation of monomers A and B as follows (1):
Monomer A is obtained by the reaction of a dianhydride compound with at an alcohol, R′OH, to yield a diester-diacid followed by conversion of the diacid-diester to a diester-diacid chloride by means of a suitable reagent (Formula 2).
The group R represents a tetravalent aromatic group containing at least one 6-membered carbon ring wherein the four carbonyl groups are directly connected to is different carbon atoms of R and wherein each of two pairs of the four carbonyl groups is connected to adjacent carbon atoms. The dianhydride compound may be selected from one or more of the following dianhydrides: pyromellitic dianhydride (PMDA), 3,3′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-perfluoroisopropylidinediphthalic dianhydride (6FDA), 4,4′-oxydiphthalic anhydride (ODPA), bis (3,4-dicarboxyl) tetramethyldisiloxane dianhydride, bis(3,4-dicarboxylphenyl)dimethylsilane dianhydride, cyclobutane tetracarboxylic dianhydride, and 1,4,5,8-naphthalenetetracarboxylic dianhydride. The tetracarboxylic dianhydrides can be used singly or in combination and selection of the dianhydride compound is not limited to the compounds listed above. The group R′ contains at least one unsaturated group which may be a vinyl, allyl, acrylyl, methacryl, acetylenic, a cyano group, or other suitable radiation crosslinkable group.
Monomer B is an divalent diamine wherein the group R
1
contains at least one 6-membered carbon ring and is selected from at least one the following group of divalent aromatic, heterocyclic, alicyclic or aliphatic amines: m-phenylenediamine, p-phenylenediamine, 2,2′-bis(trifluoromethyl)-4,4′-diamino-1,1′-biphenyl, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl
Naiini Ahmad
Racicot Donald
Roza Andrew J.
Waterson Pamela J.
Weber William D.
Arch Specialty Chemicals, Inc.
Ashton Rosemary
Ohlandt Greeley Ruggiero & Perle LLP
LandOfFree
Photosensitive polyimide precursor compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photosensitive polyimide precursor compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photosensitive polyimide precursor compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3047626