Photoresist stripping composition

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S175000, C510S484000, C510S493000, C510S502000, C510S506000

Reexamination Certificate

active

06211127

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to a photoresist stripping composition for removing photoresist in manufacturing of a device circuit of a liquid crystal display panel, and more particularly, to a photoresist stripping composition designed for a single wafer treatment method utilizing an air knife process as well as the dipping photoresist stripping process.
(2) Description of the Related Art
A semiconductor integrated circuit and a device circuit of a liquid crystal panel have very fine structures. The fine circuits are generally fabricated by uniformly coating a photoresist on an insulating film or a conductive metal film (such as an oxide film or an Al alloy film respectively), coated on a substrate, and exposing and developing the photoresist to form a certain pattern, and etching the metal film or insulating film by using the patterned photoresist as a mask, and thereafter, by removing the unnecessary photoresist.
A photoresist stripping composition is used in removing the photoresist from a substrate. In general, the stripping composition should have a high stripping force at both low and high temperatures, and should leave no residues on the substrate. Further, a desirable stripper should not corrode a metal film, while causing little hazard to both humans and the environment considering the large amount of stripping composition used in fabricating a large-scale liquid crystal display panel circuit.
To meet the above requirements, various photoresist stripping compositions have been suggested. For example, the U.S. Pat. No. 5,480,585 and the Japanese Patent Hei. 5-181753 disclose organic strippers comprising alkanolamine of the structural formula H
3
-n
N((CH
2
)
m
OH)
n
(where m is 2 or 3, and n is 1, 2 or 3), sulfone compound or sulfoxide compound and a hydroxyl compound expressed by the structural formula C
6
H
6
n
(OH)
n
(where n is 1, 2 or 3). The Japanese Laid-open Patent 4-124668 discloses a photoresist stripping composition including an organic amine of 20-90% by weight, phosphoric ester surfactant of 0.1-20% by weight, 2-butyne-1,4-diol of 0.1-20% by weight, and the remainder glycolmonoalkylether and/or aprotic polar solvent. For the glycomonoalkylether, ethyleneglycolmonoethylether, diethyleneglycolmonoethylether, or diethyleneglycolmonobutylether is used and for aprotic polar solvent, dimethylsulfoxide or N,N-dimethylaceteamide is used. The amount of the 2-butyne-1,4-diol and phosphoric ester surfactant was controlled, to the extent not sacrificing the stripping force, to prevent the corrosion of a metal film such as aluminum and iron.
The Japanese Patent Hei. 8-87118 discloses a stripping composition comprising 50 to 90% by weight of N-alkylalkanolamine and 50 to 10% by weight of dimethylsulfoxide or N-methyl-2-pyrrolidone. It states that even under hard stripping conditions the composition including N-alkylalkanolamine and the organic solvents prevent the formation of non-soluble impurities, and thus, leaves no residues on the substrate.
The Japanese Patent Laid-open Sho. 64-42653 discloses a photoresist stripping composition comprising over 50% by weight of dimethylsulfoxide (more desirably over 70% by weight), 1 to 50% by weight of a solvent selected among diethyleneglycolmonoalkylether, diethyleneglycoldialkylether, &ggr;-butyrolactone and 1,3-dimethyl-2imidazoledinon, and 0.1-5% by weight of nitrogen-including organic hydroxyl compound such as monoethanolamine. It states that the amount of dimethylsulfoxide less than 50% by weight causes great reduction in stripping force, while the amount of nitrogen-including organic hydroxyl compound solvent over 5% by weight corrodes the metal film such as aluminum.
Depending on the constituents of the compositions and the ratio thereof, the aforementioned stripping compositions exhibit greatly different characteristics in photoresist stripping force, metal corrosion properties, the complexities of a rinsing process following the stripping, environmental safety, workability and price. Such varying degrees of characteristics of the stripping compositions have led many researchers to search for the best compositions of maximum capabilities under various processing conditions.
However, the prior research has been largely directed toward developing stripping compositions suitable for the dipping method where the etched semiconductor integrated circuits or the device circuits of a liquid crystal display panel are immersed in a stripping composition to remove the photoresist. Typically, the conventional compositions designed for the dipping method show good chemical properties, such as a good stripping force, non-corrosiveness of metal and safety to humans. Unfortunately, however, these compositions have many shortcomings when used for a single-wafer treatment method using an air knife process, which is gaining an increasing popularity because of the relatively small amount of the stripping composition required. These shortcomings include less stripping force and a corrosion of metal. More importantly, residual impurities are left on the substrate, largely due to the different physical surface characteristics between the bare glass and the insulating or conductive metal film, such as an ITO film, an aluminum, chrome, silicon-nitride film and an amorphous silicon film on which the photoresist is formed.
Accordingly, the photoresist stripping compositions having the properties suitable not only for the dipping method but also for the single-wafer treatment method using an air knife process has a great demand in the industry.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a stripping composition suitable for both the single wafer treatment method and the dipping method for stripping the photoresist, particularly a composition that leaves no impurities on the substrate even when the single wafer treatment method using an air knife process is applied to strip off the photoresist.
It is another object of the present invention to provide a photoresist stripping composition that has a good stripping force against various kinds of films coated on the substrate, and prevents the formation of impurity particles when cleaning the bare glass.
To achieve the above objects, this invention provides a stripping composition comprising alkanolamine of 5-15% by weight, sulfoxide or sulfone compound of 35-55% by weight and glycolether of 35-55% by weight. Surfactants may be added to the invented composition, in order to prevent the creation and residues of impurity particles on the substrate while rinsing the bare glass.


REFERENCES:
patent: 4617251 (1986-10-01), Sizensky
patent: 5480585 (1996-01-01), Shiotsu et al.
patent: 5567574 (1996-10-01), Hasemi et al.
patent: 5597678 (1997-01-01), Honda et al.
patent: 5731243 (1998-03-01), Peng et al.
patent: 5795702 (1998-08-01), Tanabe et al.
patent: 5988186 (1999-11-01), Ward et al.
patent: 07276504 (1997-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photoresist stripping composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photoresist stripping composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoresist stripping composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2513511

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.