Pattern forming body, pattern forming method, and their...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making printing plates

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S303000, C430S321000, C101S453000, C101S465000, C101S467000, C359S738000

Reexamination Certificate

active

06294313

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a novel structure for pattern formation usable for various applications, preferably a structure for pattern formation utilizing a variation in wettability and a method for pattern formation, and application thereof to printing, color filters, lenses and the like.
BACKGROUND ART
Prior art techniques relevant to first invention A will be described.
Structures for pattern formation comprising a substrate having on its surface areas different from neighboring areas in wettability, for example, by liquids have been used in various technical fields. For example, in structures for pattern formation used in printing of designs, images, letters and the like, a pattern is provided which, upon transfer of a printing ink, receives or repels the ink. In some cases, this pattern is in the form of a patterned layer or a transferred layer formed on the structure for pattern formation according to a variation in wettability.
This will described by taking printing as an example. In plates for lithography, i.e., a kind of printing method, printing ink-receptive lipophilic areas and printing ink-unreceptive areas are provided on a flat plate. In use, an ink image to be printed is formed on the lipophilic areas and then transferred and printed onto paper or the like.
In this printing, a pattern of letters, figures or the like is formed on an original plate for a printing plate to prepare a printing plate that is then mounted on a printing machine. A large number of proposals have been made on original plates for printing plates that are used in offset printing which is representative lithography.
Plates for offset printing may be produced by a method wherein the original plate for a printing plate is exposed through a mask with a pattern drawn thereon followed by development, and a method wherein the original plate for a printing plate is directly exposed by electrophotography to prepare a printing plate. The original plate for an electrophotographic offset printing plate is prepared by a method which comprises the steps of: providing a photoconductive layer composed mainly of photoconductive particles of zinc oxide or the like and a binder resin on a conductive substrate to form a photoreceptor; exposing the photoreceptor by electrophotography to form a highly lipophilic image on the surface of the photoreceptor; and subsequently treating the photoreceptor with a desensitizing liquid to hydrophilify nonimage areas to prepare an original plate for offset printing. High critical surface tension areas are immersed in water or the like and is consequently lipophobified, and a printing ink is received by the lipophilic image areas followed by transfer onto paper or the like.
An original plate for waterless lithography has also been used wherein, instead of the immersion in water to form lipophobic areas, highly lipophobic areas are formed without relying upon immersion in water or the like to form ink-receptive areas and ink-unreceptive areas.
Further, a method for producing an original plate for lithography using a heat mode recording material has been proposed which can realize the formation of highly ink-receptive areas and ink-repellent areas by laser beam irradiation. Heat mode recording materials can eliminate the need to provide the step of development and the like, and advantageously enables printing plates to be produced simply by forming an image using a laser beam. They, however, suffer from problems associated with the regulation of laser beam intensity, the disposal of residues of solid materials denatured by the laser, the plate wear and the like.
Furthermore, photolithography is known as a method for forming a high definition pattern. In this method, for example, a photoresist layer coated onto a substrate is pattern-wise exposed, and the exposed photoresist is developed, followed by etching. Alternatively, a functional material is used in a photoresist, and the photoresist is exposed to directly form a contemplated pattern.
The formation of a high definition pattern by photolithography has been used for the formation of color patterns in color filters for liquid crystal displays and the like, the formation of microlenses, the production of high definition electric circuit boards, the production of chromium masks for pattern-wise exposure and other applications. In these methods, however, in addition to the use of the photoresist, development using a liquid developing solution or etching should be carried out after the exposure. This poses problems including the necessity of treating waste liquid. Further, use of a functional material as the photoresist disadvantageously raises problems including deterioration of the photoresist by an alkaline liquid or the like used in the development.
Formation of a high definition pattern for color filters or the like by printing or the like has also been carried out. Patterns formed by printing suffer from problems of positional accuracy and the like, and, hence, in this method, it is difficult to form high definition patterns.
In order to solve these problems, the present inventors have already proposed, in Japanese Patent Application No. 214845/1997, a structure for pattern formation and a method for pattern formation wherein a material, of which the wettability is variable through photocatalytic action, is used to form a pattern. According to the present invention, in the structure and method for pattern formation using a photocatalyst, structure and method for pattern formation having better properties are provided.
It is an object of the first invention A to provide a novel structure for pattern formation and a method for pattern formation. It is another object of the first invention A to provide a novel original plate for a printing plate that can solve the problems of the conventional original plates for printing plates. It is a further object of the first invention A to provide a structure for pattern formation and a method for pattern formation that can be used to provide functional elements having excellent properties.
Prior art techniques relevant to second invention B will be described.
In liquid crystal display devices (LCDs), color filters are used in both active matrix system and simple matrix system in order to cope with an increasing demand for color display in recent years. For example, in liquid crystal displays of active matrix system using a thin film transistor (TFT), the color filter has color patterns of the three primary colors of red (R), green (G), and blue (B), and electrodes corresponding respectively to pixels of R, G, and B are turned on or off to permit a liquid crystal to function as a shutter, whereby light passes through pixels of R, G, and B to perform color display. In the case of color mining, liquid crystal shutters corresponding to two or more pixels are opened to mix colors together so that, on the principle of additive color process, a viewer sees a different color on the retina.
Examples of methods for producing conventional color filters include a dyeing method which comprises coating a dyeing substrate onto a transparent substrate, exposing the coated substrate through a photomask, conducting development to form a pattern, and dyeing the pattern to form a colored layer, a pigment dispersion method which comprises previously dispersing a color pigment in a photosensitive resist layer provided on a transparent substrate, exposing the resist layer through a photomask, and conducting development to form a colored layer, a printing method which comprises printing colored layers using printing inks onto a transparent substrate, and an electrodeposition method which comprises forming a transparent electrode pattern on a transparent substrate and repeating, three times for R, G, and B, the energization of the transparent electrode pattern in an electrode liquid of a predetermined color to electrodeposit the color, thereby forming patterns of the colors.
In the conventional dyeing method and pigment dispersion method, however, material loss cannot be avoided in the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pattern forming body, pattern forming method, and their... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pattern forming body, pattern forming method, and their..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pattern forming body, pattern forming method, and their... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2520312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.