Electrical transmission or interconnection systems – Vehicle mounted systems – Automobile
Reexamination Certificate
1999-09-13
2003-05-06
Fleming, Fritz (Department: 2836)
Electrical transmission or interconnection systems
Vehicle mounted systems
Automobile
C307S121000, C280S735000
Reexamination Certificate
active
06559555
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to passenger detection systems and methods, and relates in particular to an improved passenger detection system that places the airbag for the passenger, in the deployable or not-deployable state, depending on the seating conditions of the passenger sitting in the passenger seat in an automobile.
This application is based on Japanese Patent Applications Nos. Hei 10-061299, Hei 10-077870, Hei 10-077871, Hei 10-077872, Hei 10-077873, Hei 10-083797, Hei 10-083798, Hei 10-083799, Hei 10-097782, and Hei 10-153270, the contents of which are incorporated herein by reference.
2. Description of the Related Art
In general, an airbag apparatus in an automobile is aimed at protecting the driver of the vehicle from fatal injuries, in the event of a collision, and is now considered to be an essential item for automotive safety, and in recent years, an airbag is provided for the passenger as well as for the driver.
An example of such an airbag apparatus is shown in
FIG. 96
, and is comprised by: a driver-side squib circuit comprised by a series circuit including safety sensor SS
1
, squib SQ
1
, and a semiconductor switching device SW
1
such as field effect transistor; a passenger-side squib circuit comprised by a series circuit including a safety sensor SS
2
, a squib SQ
2
, and a semiconductor switching device SW
2
such as field effect transistor; an electronic accelerometer (impact sensor) GS; a control circuit CC for judging an impact force on the basis of output signals from the sensor GS, and to supply signals to the gate circuits of the switching devices SW
1
, SW
2
.
This air bag apparatus, when a collision occurs for whatever reason, safety sensor SS
1
, SS
2
are closed responding to a relatively minor acceleration, and the squib circuits are placed in an operable state. And, when the control circuit CC judges that a collision has definitely taken place according to the signals from the accelerometer GS, signals are sent to the gates of switches SW
1
, SW
2
and the switches SW
1
, SW
2
are closed. As a result of a current flowing in the respective squib circuits, the driver-side and passenger-side airbags are deployed because of the heating in the squib SQ
1
, SQ
2
, and the occupants are protected from the collision impact.
However, this type of airbag apparatus is designed so that the airbags are deployed upon collision, regardless of the presence of a passenger so that, when an adult is sitting on the passenger seat, protective effect against collision can be expected, but when a child is sitting on the passenger seat, because the seated height is shorter and the head position is lower than an adult, the effect of airbag deployment on the child can be more damaging. Therefore, in some cases, it may be desirable that the airbag on the passenger-side be not deployed upon collision, when the passenger is a child.
Accordingly, in the past, an airbag apparatus such as the one shown in
FIG. 97
has been proposed to address such a concern. This airbag apparatus includes a sensor SD to detect whether a passenger is seated, and the control circuit CC judges the seating condition according to the detected signal from the sensor SD, when a collision occurs, it is designed so that the control circuit CC makes the airbag apparatus deployable or not deployable. Proposed systems are based on: either to measure the weight of the passenger according to a weight sensor to decide if the passenger is an adult or a child; or to record an image of the passenger and decide between an adult or a child based on the processed image.
The weight method is capable of estimating substantially whether the passenger is an adult or a child, and based on the result, the airbag is placed either in the deployable state or not-deployable state, to safeguard the passenger in the event of a collision. However, body weight is subject to individual differences, and there is a serious concern in basing such a critical decision solely on loading factor, and the efficacy of such a system is in doubt.
The imaging method is able to reasonably estimate the seating condition of the passenger and decide whether the passenger is an adult or a child, but the method is based on comparing the current image data with various stored patterns so that the apparatus can be complex and expensive.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a passenger detection system and a method for precisely detecting the sitting conditions of a passenger occupying a seat, and based on the results of a detection process, an airbag apparatus is instructed to be in an appropriate operational state.
To achieve the objective, the present invention provides a passenger detection system comprising: a plurality of antenna electrodes disposed separately on a seat; an electric field generation device for generating a weak electric field around an antenna electrode; a switching circuit for selecting a particular antenna electrode from the plurality of antenna electrodes and connecting to the electric field generation device; an information detection circuit for generating a particular electric field around the particular antenna electrode, and obtaining information related to a current flowing in the particular antenna electrode resulting from applying the particular electric field; and a control circuit for receiving signal data from the information detection circuit and judging passenger seating conditions on the seat according to the signal data.
Aspect 2 of the present invention provides a passenger detection system having a plurality of antenna electrodes disposed separately on a seat; an electric field generation device for generating a weak electric field around an antenna electrode; a switching circuit for selecting a particular antenna electrode from the plurality of antenna electrodes and providing an electrical connection to the electric field generation device; an information detection circuit for generating a particular electric field around the particular antenna electrode, and obtaining information related to a current flowing in the particular antenna electrode resulting from applying the particular electric field; a control circuit for receiving signal data from the information detection circuit and judging passenger seating conditions on the seat according to the signal data; and an airbag apparatus for enabling to deploy, upon collision, an airbag designated for the seat; wherein the airbag apparatus is instructed by the control circuit to be either in the deployable state or not-deployable state according to judging data generated by the control circuit. Aspect 3 of the system is that the plurality of antenna electrodes are disposed on a sitting section and/or backrest section of the seat.
Aspect 4 of the present invention provides a passenger detection method based on disposing generating an electric field around a particular selected from a plurality of antenna electrodes; detecting information related to a current flowing in the particular antenna electrode resulting from applying the electric field; and judging passenger seating conditions according to signal data related to the information.
Aspect 5 of the present invention provides a passenger detection method comprising the steps of: disposing a plurality of antenna electrodes separately on a seat; selecting a particular antenna electrode from the plurality of antenna electrodes; generating an electric field on the particular antenna electrode; detecting information related to a current flowing in the particular antenna electrode resulting from applying the particular electric field; evaluating passenger seating conditions according to signal data related to the information and producing a judgment; sending the judgment to an airbag apparatus so as to place an airbag of the airbag apparatus either in the deployable state or not-deployable state.
As disclosed above, the present passenger detection system is based on a plurality of antenna electrodes di
Jinno Kazunori
Ofuji Masahiro
Oka Yoshitaka
Saitou Takashi
Dickstein Shapiro Morin & Oshinsky LLP.
Fleming Fritz
NEC Corporation
LandOfFree
Passenger detection system and detection method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Passenger detection system and detection method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Passenger detection system and detection method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3023800