Partial block data programming and reading operations in a...

Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C711S115000, C365S185110, C365S185330, C365S218000

Reexamination Certificate

active

06763424

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention pertains to the field of semiconductor non-volatile data storage system architectures and their methods of operation, and has application to data storage systems based on flash electrically erasable and programmable read-only memories (EEPROMs).
A common application of flash EEPROM devices is as a mass data storage subsystem for electronic devices. Such subsystems are commonly implemented as either removable memory cards that can be inserted into multiple host systems or as non-removable embedded storage within the host system. In both implementations, the subsystem includes one or more flash devices and often a subsystem controller.
Flash EEPROM devices are composed of one or more arrays of transistor cells, each cell capable of non-volatile storage of one or more bits of data. Thus flash memory does not require power to retain the data programmed therein. Once programmed however, a cell must be erased before it can be reprogrammed with a new data value. These arrays of cells are partitioned into groups to provide for efficient implementation of read, program and erase functions. A typical flash memory architecture for mass storage arranges large groups of cells into erasable blocks, wherein a block contains the smallest number of cells (unit of erase) that are erasable at one time.
In one commercial form, each block contains enough cells to store one sector of user data plus some overhead data related to the user data and/or to the block in which it is stored. The amount of user data included in a sector is the standard 512 bytes in one class of such memory systems but can be of some other size. Because the isolation of individual blocks of cells from one another that is required to make them individually erasable takes space on the integrated circuit chip, another class of flash memories makes the blocks significantly larger so there is less space required for such isolation. But since it is also desired to handle user data in much smaller sectors, each large block is often further partitioned into individually addressable pages that are the basic unit for reading and programming user data (unit of programming and/or reading). Each page usually stores one sector of user data, but a page may store a partial sector or multiple sectors. A “sector” is used herein to refer to an amount of user data that is transferred to and from the host as a unit.
The subsystem controller in a large block system performs a number of functions including the translation between logical addresses (LBAs) received by the memory sub-system from a host, and physical block numbers (PBNs) and page addresses within the memory cell array. This translation often involves use of intermediate terms for a logical block number (LBN) and logical page. The controller also manages the low level flash circuit operation through a series of commands that it issues to the flash memory devices via an interface bus. Another function the controller performs is to maintain the integrity of data stored to the subsystem through various means, such as by using an error correction code (ECC).
In an ideal case, the data in all the pages of a block are usually updated together by writing the updated data to the pages within an unassigned, erased block, and a logical-to-physical block number table is updated with the new address. The original block is then available to be erased. However, it is more typical that the data stored in a number of pages less than all of the pages within a given block must be updated. The data stored in the remaining pages of the given block remains unchanged. The probability of this occurring is higher in systems where the number of sectors of data stored per block is higher. One technique now used to accomplish such a partial block update is to write the data of the pages to be updated into a corresponding number of the pages of an unused erased block and then copy the unchanged pages from the original block into pages of the new block. The original block may then be erased and added to an inventory of unused blocks in which data may later be programmed. Another technique similarly writes the updated pages to a new block but eliminates the need to copy the other pages of data into the new block by changing the flags of the pages in the original block which are being updated to indicate they contain obsolete data. Then when the data are read, the updated data read from pages of the new block are combined with the unchanged data read from pages of the original block that are not flagged as obsolete.
SUMMARY OF THE INVENTION
According to one principal aspect of the present invention, briefly and generally, both the copying of unchanged data from the original to the new blocks and the need to update flags within the original block are avoided when the data of fewer than all of the pages within a block are being updated. This is accomplished by maintaining both the superceded data pages and the updated pages of data with a common logical address. The original and updated pages of data are then distinguished by the relative order in which they were programmed. During reading, the most recent data stored in the pages having the same logical address are combined with the unchanged pages of data while data in the original versions of the updated pages are ignored. The updated data can be written to either pages within a different block than the original data, or to available unused pages within the same block. In one specific implementation, a form of time stamp is stored with each page of data that allows determining the relative order that pages with the same logical address were written. In another specific implementation, in a system where pages are programmed in a particular order within the blocks, a form of time stamp is stored with each block of data, and the most recent copy of a page within a block is established by its physical location within the block.
These techniques avoid both the necessity for copying unchanged data from the original to new block and the need to change a flag or other data in the pages of the original block whose data have been updated. By not having to change a flag or other data in the superceded pages, a potential of disturbing the previously written data in adjacent pages of that same block that can occur from such a writing operation is eliminated. Also, a performance penalty of the additional program operation is avoided.
A further operational feature, which may be used in conjunction with the above summarized techniques, keeps track of the logical offset of individual pages of data within the individual memory cell blocks, so that the updated data need not be stored with the same physical page offset as the superceded data. This allows more efficient use of the pages of new blocks, and even allows the updated data to be stored in any erased pages of the same block as the superceded data.
Another principal aspect of the present invention groups together two or more blocks positioned in separate units of the memory array (also termed “sub-arrays”) for programming and reading together as part of a single operation. Such a multiple block group is referenced herein as a “metablock.” Its component blocks may be either all located on a single memory integrated circuit chip, or, in systems using more than one such chip, located on two or more different chips. When data in fewer than all of the pages of one of these blocks is updated, the use of another block in that same unit is normally required. Indeed, the techniques described above, or others, may be employed separately with each block of the metablock. Therefore, when data within pages of more than one block of the metablock are updated, pages within more than one additional block are required to be used. If there are four blocks of four different memory units that form the metablock, for example, there is some probability that up to an additional four blocks, one in each of the units, will be used to store updated pages of the original blocks. One update block is potentially

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Partial block data programming and reading operations in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Partial block data programming and reading operations in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Partial block data programming and reading operations in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3222181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.