Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only
Reexamination Certificate
2001-06-14
2003-07-22
Whitehead, Jr., Carl (Department: 2871)
Liquid crystal cells, elements and systems
Particular structure
Having significant detail of cell structure only
C349S124000, C428S001400
Reexamination Certificate
active
06597422
ABSTRACT:
This application is a national stage filing of International Application No. PCT/IB99/01938, filed Dec. 6, 1999, which published in the English language. This application also claims the benefit of priority under 35 U.S.C. §119(a) to GB Application No. 9827540.7, filed on Dec. 15, 1998 and GB Application No. 9828283.3, filed on Dec. 22, 1998.
The invention relates to an orientation layer for a liquid crystal material.
Liquid crystal (LC) devices normally comprise a thin cell containing a liquid crystal material, the upper and lower inside faces of the cell carrying (usually transparent) orientation layers. These innermost layers are imparting a preferred orientation to liquid crystal molecules in their vicinity by defining the actual arrangement of the liquid crystal director close to the boundary. This preferred orientation tends to persist even away from the orientation layers due to the strong interaction of the liquid crystal molecules.
In nematic liquid crystals, the boundary can be characterised by the direction of the director (azimuth and tilt) the orientating layer induces in the liquid crystal, together with a parameter—the anchoring energy—that describes the strength of this anchoring, i.e. the change of the orientation if elastic deformations apply a torque to the boundary layers.
In ferroelectric liquid crystal displays (LCD)—which are based on chiral smectic-C liquid crystals—things are more complicated, since the orientation of the smectic layers as well as the orientation of the director inside the layers have to be defined. Furthermore, the quality of the liquid crystal alignment also depends to a large degree on the liquid crystal material used. Therefore, numerous combinations of orienting layers and liquid crystal materials have been proposed.
The existence of an orientation layer can bring difficulties:
In liquid crystal displays with large spontaneous polarisation P
S
such as Deformed Helix Ferroelectric (DHF) or Short-pitch Bistable Ferroelectric (SBF) or antiferroelectric liquid crystal displays, the voltage drop over the isolating orientation layer is large for a large thickness d
OR
of the orientation layer. This voltage drop is approximately given by
U
OR
=
P
S
⁢
d
OR
ϵϵ
0
where ∈ is the dielectric constant of the orienting layer and ∈
0
is the permittivity of vacuum. Taking P
S
=1 mC/m
2
, d
OR
=100 nm, ∈=3 results in U
OR
=3.8 V per orienting layer.
Similar considerations hold for electroclinic liquid crystal displays (cf. e.g. S. Garroff and R. B. Meyer, Phys. Rev. Lett., 38, 848-851, 1977).
In liquid crystal displays with lower P
S
, such as Alternating Polarisation Domain (APD) or Surface Stabilised Ferroelectric (SSF) liquid crystal displays, this voltage drop is smaller, but still undesirable.
In addition, SSF liquid crystal displays require thin orientation layers to avoid the build-up of polarisation charges which lead to ghost pictures in SSF liquid crystal displays.
Thus, one condition is important, namely, the orientation layer must be thin.
As a consequence, also orientation layers for SSF liquid crystal displays are thin, sometimes even monomolecular (e.g. Langmuir-Blodgett films).
The standard procedure to prepare orienting layers consists of coating the substrates with a thin polymer layer and subsequent rubbing of the layer to induce the desired orientation direction. This rubbing process has undesirable side-effects such as giving rise to dust particles, which are particularly damaging in the production of small-cell-gap (below 2 &mgr;m) liquid crystal displays, thus including most ferroelectric liquid crystal displays.
EP 756 193 describes a technique to align liquid crystals with a two-layer process:
A first layer of a linearly photopolymerisable material is coated onto the substrate and exposed to polarised light. This light induces crosslinking reactions in the layer, and because polarised light is used, this crosslinking induces an anisotropy in the layer. Such layers are called linearly photopolymerised polymer (LPP) layers, also known as photo-oriented polymer networks (PPN).
A second layer of nematic monomers or prepolymers is then applied. This nematic liquid crystal is oriented by the LPP layer, i.e. the anisotropy in the LPP layer is transferred to the nematic liquid crystal layer. This oriented nematic prepolymer layer is then photopolymerised and thus permanently fixed as a highly anisotropic polymer network (for such networks also the term ‘liquid crystalline polymer networks’, LCP's, is being used). In turn, this nematic prepolymer-based anisotropic network can act as an orienting layer for liquid crystals.
This procedure uses two layers, the LPP and the nematic prepolymer-based anisotropic network, thus doubling the overall thickness of the orientation layer. Furthermore, if the nematic prepolymer layer is of the order of or thinner than the extrapolation length [see e.g. P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2
nd
edition, Clarendon Press, Oxford 1993, p. 196], the liquid crystal can no longer average or smooth over microscopic irregularities in the orienting layer. Precise numbers for this extrapolation length are not known, but typical values quoted are larger than 100 nm. Very thin nematic prepolymer layers—and, therefore, also the nematic prepolymer-based anisotropic networks made from those prepolymer layers—will not orient homogeneously but will reflect the microscopic irregularities of the underlying LPP layer.
In total contrast to the foregoing, and in opposition to received teaching, the present invention consists in a component comprising a liquid crystal material in contact with an orientation layer, the orientation layer having a first layer of a linearly photopolymerised polymer and a second layer of a nematic prepolymer-based anisotropic network, characterised in that the overall thickness of the two layers together does not exceed 40 nanometers.
Preferably each of the layers is less than 20 nm thick.
Especially advantageous for many cases is an overall layer thickness of less than 20 nm, and most preferably the overall layer thickness is less than 10 nm.
Such orientation layers are surprisingly especially suited for use with ferroelectric liquid crystal materials, such as for Deformed Helix Ferroelectric or Short-pitch Bistable Ferroelectric or Alternating Polarisation Domain or Surface Stabilised Ferroelectric or antiferroelectric liquid crystal displays, as well as for electroclinic liquid crystal displays.
The orientation layer may be patterned as for multi-domain pixel operation, in other words the orientation may vary locally.
The nematic prepolymer-based anisotropic network is preferably photopolymerised, however, it is also possible to use a different polymerisation method, such as e.g. thermal polymerisation.
With orientation layers according to the invention advantageous homogeneous alignments and textures of liquid crystal material and high contrast ratios are achievable, which often are superior to an orientation layer consisting of LPP only.
Furthermore, the two-layer technique allows to control the tilt angle of the second layer, the nematic prepolymer-based anisotropic network, and thus also the tilt angle of the ferroelectric liquid crystal in a ferroelectric liquid crystal display. This can be very important to control the formation of chevron structures in smectic ferroelectric liquid crystal layers.
REFERENCES:
patent: 5644016 (1997-07-01), Roschert et al.
patent: 6061113 (2000-05-01), Kawata
patent: 6215539 (2001-04-01), Schadt et al.
patent: 6362863 (2002-03-01), Kataoka et al.
patent: 0 756 193 (1997-01-01), None
M. Schadt et al.,Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys. vol. 34 (1995) pp. 3240-3249.
Fünfschilling Jürg
Schadt Martin
Stalder Martin
Finnegan Henderson Farabow Garrett & Dunner LLP
Jr. Carl Whitehead
Nguyen Thanh
Rolic AG
LandOfFree
Orientation layer for a liquid crystal material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Orientation layer for a liquid crystal material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orientation layer for a liquid crystal material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3109939