Organic polymers for bottom antireflective coating, process...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S311000, C426S273000, C426S232000, C426S304000, C426S320000, C426S326000

Reexamination Certificate

active

06610457

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a bottom antireflective coating layer for suppressing a reflective notching that occurs at a substrate surface under a photoresist during the exposing process of photolithography using a deep ultraviolet light source to form a submicron-level, large-scale semiconductor integrated-circuit and eliminating the effect of a standing wave that occurs due to a variation of thickness of photoresist and using a light source. More particularly, it is related to the compositions of antireflective coating materials that contain an isoflavone chromophore and to a method of producing the compositions.
BACKGROUND OF THE INVENTION
An organic antireflective coating (ARC) layer is a very thin film of light-absorbing material used in photolithography for stably forming a submicron pattern of 100 nm~200 nm or less that is essential to producing a giga-bit level, large-scale integrated chip. This thin film is called a bottom antireflective coating (BARC or bottom ARC) because it is coated primarily on a substrate surface under the photoresist for exposing the process of deep ultraviolet light.
In conventional photolithography, there are problems with reflective notching occurring at a substrate surface under a photoresist during an exposing process and an effect of a standing wave occurring due to a variation of thickness of photoresist and using a light source. Due to such problems, it is difficult to stably form a submicron pattern of 100 nm~ 200 nm of less on the substrate surface. Therefore, an organic bottom ARC layer is needed for absorbing incident light of specific wavelength.
The ARC layer must have an excellent property of light absorption, as the wavelength of light source is shortened (G-line, T-line, KrF, ArF, F
2
etc.) in accordance with the technology of submicron-level, large-scale integrated chip advanced (M. Padmanaban et al., Proc. SPIE, 3678, 550 (1999); E. Iguchi et al., Proc. SPIE, 3999, 521 (2000); M. Padmanaban et al., Proc. SPIE, 333, 206 (1998)).
Remarkably, even though a variety of techniques have been developed in the semiconductor manufacturing industry, the conventional spin-coated photolithography, a photoresist on a silicone substrate for a subsequent exposure process, becomes no more suitable to apply for stably producing a sub-micron pattern of 100~200 nm. Consequently, it is necessary to apply a special technique of thin film coating prior to coating a photoresist. The antireflective coating layer in the photolithography becomes indispensable in preventing an effect of a standing wave in the photoresist occurring from interference between an incident light to a photoresist and the reflected light from the substrate surface. The coating will also prevent or remarkably reduce the reflections caused from the topography of already-formed circuits, as well as reflective notching on the edges. Therefore, a desired critical dimension (CD) of submicron circuit could be controlled accurately. It also could ease the tolerance conditions for the producing process.
This antireflective coating layer could be divided into an organic material being spin-coated according to its compositions and an inorganic material being coated by chemical vapor deposition. In recent years, organic antireflective coatings have been increasingly used.
Particularly, due to an advanced exposure process used in a high energy short wavelength such as a deep ultraviolet light, a chromophore having a high light absorption in the deep ultraviolet light spectrum is required, mainly leading the development of an organic antireflection coating layer using naphthalene or anthracene derivatives. (J. Fahey et al., Proc. SPIE, 2195, 422 (1994); K. Mizutani et al., Porc. SPIE. 3677, 518 (1999)). This technique is disclosed in U.S. Pat. Nos. 5,693,692, 5,851,738, 5,919,599 and 6,033,830.
SUMMARY OF THE INVENTION
A technological objective of the present invention is to provide a novel organic, photosensitive material that contains an isoflavone chromophore, as well as a method for producing the same. Such a material would be able to be used as an antireflective coating layer in a photolithographic process using a Krytonfluoride (KrF) eximer laser of 248 nm-wavelength and Argonfluoride (ArF) eximer laser of 193 nm-wavelength as an exposing light source for producing a large-scale integrated semiconductor device.
Another objective of the present invention is to provide organic polymer material that has an isoflavone chromophore as a side chain for preventing light reflections that are transmitted through the photoresist during a light-exposing process, as well as a method for producing the same.
Another objective of the present invention is to provide the composition of a bottom, antireflective coating layer using the organic polymer materials.
Yet another objective of the present invention is to provide a protective coating layer produced by using the composition of a bottom antireflective coating layer, as well as a method for producing the same.
DETAILED DESCRIPTION OF THE INVENTION
Generally, an incident light is transmitted, absorbed, reflected or refracted depending on the optical property of materials and encountered interfaces. By utilizing this well-known property of light, the present invention develops an organic antireflective coating (ARC) layer for absorbing incident light. If an organic ARC layer has the same refractive index as the photoresist has, there would be no reflections at the interface of the photoresist and the ARC layer. For this reason, the ARC layer must have the same optical property as a commercial DUV photoresist to have the identical performance of a lithographic. Consequently, the organic antireflective coating (ARC) layer of the present invention is designed to absorb the incident light so that the light penetrated through the interface of the photoresist and the ARC layer will be absorbed before reaching the substrate surface.
Therefore, the organic bottom ARC layer should have excellent high light absorption against a specific exposure wavelength of 248 nm, 193 nm and 157 nm of eximer laser for photolithographic process. Along with the propagation of a photolithographic process that uses a Kyrtonfluoride (KrF) eximer laser, the role of antireflective coating layer becomes a more important matter. Therefore, most compositions of an organic antireflective layer are required to have the following conditions:
It must have a proper optical constant such as a refractive index (n) and an extinction coefficient (k) for a light source, both of which are used in semiconductor production.
The organic bottom antireflective coating layer should have a high selection ratio with respect to plasma dry etching compared with an upper layer of photoresist and should not have defects in accordance with dry etching.
It must not have a phenomenon of inter-mixing the photoresist with the bottom antireflective coating layer, and it must have a reactive site for the sake of forming an appropriate crosslink in the organic polymer.
The organic bottom antireflective coating layer should be in acid equilibrium with the photoresist after the exposing and developing process so as not to induce undercutting or footing at a sublayer of pattern.
It must have the capability of layer formation and layer uniformity for forming a proper thickness of bottom antireflective coating layer suitable to process revolutions per minute (RPMs).
A polymer for a bottom antireflective coating (BARC) layer of the present invention comprises isoflavone chromophore that has a high light absorption of 248 nm and 193 nm of exposure wavelengths in a main chain, monomer contained hydroxyl group for crosslinking during formation of an antireflective coating layer, a co-monomer for adjusting the property of polymer, and co-polymer, ter-polymer or quarto-polymer comprised of three or four different kinds of monomers. A general formula of polymer is represented as follows:
That is, a polymer of the present invention of a bottom antireflective coating layer has the structure —(M
a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic polymers for bottom antireflective coating, process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic polymers for bottom antireflective coating, process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic polymers for bottom antireflective coating, process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081515

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.