Organic anti-reflective coating polymer, anti-reflective...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S905000, C430S910000, C526S273000, C526S311000, C526S312000, C526S320000, C526S328500, C526S329600

Reexamination Certificate

active

06599678

ABSTRACT:

BACKGROUND
1. Technical Field
An organic anti-reflective polymer and its preparation method are disclosed which prevents back reflection of lower film layers and eliminates standing wave that occurs as a result of thickness changes of the photoresist and light, in a process for fabricating ultrafine patterns that use photoresist for lithography by using 248 nm KrF and 193 nm ArF. More particularly, the disclosed organic anti-reflective polymer is useful for fabricating ultrafine patterns of 64M, 256M, 1G, and 4G DRAM semiconductor devices. A composition containing such organic anti-reflective polymer, an anti-reflective coating layer made therefrom and a preparation method thereof is also disclosed.
2. Description of the Background Art
In a fabrication process of ultrafine patterns for preparing semiconductor devices, standing waves and reflective notching inevitably occur due to the optical properties of lower film layer on the wafer and due to the thickness changes in the photosensitive film. In addition, there is another problem in that a CD (critical dimension) alteration is caused by diffracted and reflected light from the lower film layers. Thus, it has been suggested to introduce anti-reflective coating that prevents back reflection at a lower film layer by introducing organic material with high absorbance at a wavelength range of the light employed as a light source.
Anti-reflective coatings are classified into inorganic and organic anti-reflective coatings depending upon the material used, or into absorptive and interfering anti-reflective coatings based on the operation mechanism. For microlithography using I-line (365 nm wavelength) radiation, inorganic anti-reflective coatings are predominantly used, while TiN and amorphous carbon is employed as an absorptive system and SiON is employed as an as interfering system.
In a fabrication process of ultrafine patterns using KrF laser, SiON has been mainly used as an inorganic anti-reflective film. However, in the case of an inorganic anti-reflective film, no material has been known which enables the control of the interference at 193 nm, the wavelength of the light source. Thus, there has been great deal of efforts to employ an organic compound as an anti-reflective coating.
To be a good organic anti-reflective coating, the following conditions must be satisfied. First, peeling of the photoresist layer due to the dissolution in a solvent must not take place when conducting a lithographic process. In order to achieve this goal, a molded coating must be designed to form a cross-linked structure without producing any chemical by-product. Second, chemicals such as acid or amine must not come-in or go-out from the anti-reflective coating. This is because when acid migrates from anti-reflective coating, undercutting occurs at a lower part of the pattern while footing may occur when a base such as amine migrates. Third, the etching speed of the anti-reflective coating should be faster than the etching of the upper photosensitive film so as to facilitate etching process by using photosensitive film as a mask. Finally, the anti-reflective coating must be as thin as possible to an extent to sufficiently play a role as an anti-reflective coating.
The existing organic anti-reflective material are mainly divided into two types: (1) polymers containing a chromophore, cross-linking agent (single molecule) that cross-link the polymers and an additive (thermally variable oxidant); and (2) polymers which can cross link themselves and contain a chromophore and an additive (thermally variable oxidant). But these two types of anti-reflective material are problematic in that the control of k value is almost impossible because the content of the chromophore is defined according to the ratio as originally designed at the time of polymerization. Thus, if it is desired to change the k value, the polymer must be resynthesized.
SUMMARY OF THE DISCLOSURE
A novel organic polymer for anti-reflective coating and its preparation method are disclosed.
An anti-reflective coating composition comprising the aforementioned polymer and a preparation method thereof are also disclosed.
A semiconductor device on which a pattern is formed from such an anti-reflective coating by submicrolithography is also disclosed.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
The following compounds having Formulas 1 and 2, respectively are provided which can be used in an anti-reflective coating.
The polymer of the above-structured Formula 1 is synthesized from the compound of the following Formula 10.
In the above Formulas 1 to 3:
R
a
to R
d
are each independently hydrogen or methyl;
R
a
to R
d
, and R
1
to R
9
are each independently —H, —OH, —OCOCH
3
, —COOH, —CH
2
OH, or substituted or unsubstituted, or straight or branched alkyl or alkoxy alkyl having 1 to 5 carbon atoms;
1, m and n each represents an integer selected from 1, 2, 3, 4 and 5;
w, x, y, and z each represents mole fraction from 0.01 to 0.99;
R
10
and R
11
are each independently straight or branched substituted C
1-10
alkoxy; and
R
12
is hydrogen or methyl.
The compound of Formula 2 is prepared by polymerizing (meth)acrolein to obtain poly(meth)acrolein followed by reacting the obtained polymeric product with branched or straight substituted alkyl alcohol having 1 to 10 carbon atoms.
In detail, (meth)acrolein is first dissolved in an organic solvent and added thereto a polymerization initiator to carry out polymerization under vacuum at a temperature ranging from about 60 to about 70° C. for a time period ranging from about 4 to about 6 hours. Then, the obtained polymeric product is reacted with branched or straight substituted alkyl alcohol having 1 to 10 carbon atoms in the presence of trifluoromethylsulfonic acid as a catalyst at a room temperature for a time period ranging from about 20 to about 30 hours.
In the above process, suitable organic solvent is selected from the group consisting of tetrahydrofuran (THF), cyclohexanone, dimethylformamide, dimethylsulfoxide, dioxane, methylethylketone, benzene, toluene, xylene and mixtures thereof. As a polymerization initiator, it can be mentioned 2,2-azobisisobutyronitrile (AIBN), benzoylperoxide, acetylperoxide, laurylperoxide, t-butylperacetate, t-butylhydroperoxide or di-t-butylperoxide. A preferred example of the said alkyl alcohol having 1 to 10 carbon atoms is ethanol or methanol.
A preferred compound of Formula 2 is selected from the group consisting of the compounds of the following Formulas 3 to 6.
The above compounds of Formulas 3 to 6 are readily cured in the presence of acid and other polymers having alcohol group.
The polymer of Formula 1 is prepared by reacting 9-anthracene methyliminealkylacrylate monomer, hydroxyalkylacrylate monomer, glycidylalkylacrylate monomer and methylmethacrylate monomer in an organic solvent and then polymerizing the obtained compound with a polymerization initiator. Any conventional organic solvent can be used in this process but a preferred solvent is selected from the group consisting of tetrahydrofuran, toluene, benzene, methylethylketone, dioxane and mixtures thereof. As a polymerization initiator, any conventional radical polymerization initiator can be used but it is preferred to use a compound selected from the group consisting of 2,2′-azobisisobutyronitrile, acetylperoxide, laurylperoxide, and t-butylperoxide. The above polymerization reaction is preferably carried out at a temperature ranging from about 50 to about 90° C. and the mole ratio of each monomer falls within the broad range, 0.01 to 0.99:0.01 to 0.99.
An anti-reflective coating composition can comprise a polymer of Formula 1 and a polymer of Formula 2.
Further, an anti-reflective coating composition can comprise a polymer of Formula 1, a compound of Formula 2 and an anthracene derivative as an additive. Illustrative, non-limiting examples of the anthracene derivatives (hereinafter, “anthracene derivative additive”) is selected from the group consisting of anthracene, 9-anthracenemethanol, 9-anthracenecarbonitrile, 9-antracen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic anti-reflective coating polymer, anti-reflective... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic anti-reflective coating polymer, anti-reflective..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic anti-reflective coating polymer, anti-reflective... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3055465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.