Optimal operation of conformal silica deposition reactors

Semiconductor device manufacturing: process – Coating of substrate containing semiconductor region or of... – Insulative material deposited upon semiconductive substrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S909000, C438S935000, C438S781000, C438S789000, C438S790000, C438S907000, C257SE21545, C257SE21546

Reexamination Certificate

active

07135418

ABSTRACT:
Methods of forming conformal films that reduce the amount of metal-containing precursor and/or silicon containing precursor materials required are described. The methods increase the amount of film grown following each dose of metal-containing and/or silicon-containing precursors. The methods may involve introducing multiple doses of the silicon-containing precursor for each dose of the metal-containing precursor and/or re-pressurizing the process chamber during exposure to a dose of the silicon-containing precursor. The methods of the present invention are particularly suitable for use in RVD processes.

REFERENCES:
patent: 5314724 (1994-05-01), Tsukune et al.
patent: 5525550 (1996-06-01), Kato
patent: 5527561 (1996-06-01), Dobson
patent: 5597395 (1997-01-01), Bocko et al.
patent: 5705028 (1998-01-01), Matsumoto
patent: 5985770 (1999-11-01), Sandhu et al.
patent: 6030881 (2000-02-01), Papasouliotis et al.
patent: 6102993 (2000-08-01), Bhandari et al.
patent: 6133160 (2000-10-01), Komiyama et al.
patent: 6184143 (2001-02-01), Ohashi et al.
patent: 6300219 (2001-10-01), Doan et al.
patent: 6316063 (2001-11-01), Andideh et al.
patent: 6335261 (2002-01-01), Natzle et al.
patent: 6352943 (2002-03-01), Maeda et al.
patent: 6352953 (2002-03-01), Seki et al.
patent: 6372669 (2002-04-01), Sandhu et al.
patent: 6503330 (2003-01-01), Sneh et al.
patent: 6511399 (2003-01-01), Etchason et al.
patent: 6511539 (2003-01-01), Raaijmakers
patent: 6531377 (2003-03-01), Knorr et al.
patent: 6534395 (2003-03-01), Werkhoven et al.
patent: 6534802 (2003-03-01), Schuegraf
patent: 6540838 (2003-04-01), Sneh et al.
patent: 6551339 (2003-04-01), Gavronsky
patent: 6586349 (2003-07-01), Jeon et al.
patent: 6624091 (2003-09-01), Yuan
patent: 6780789 (2004-08-01), Yu et al.
patent: 6802944 (2004-10-01), Ahmad et al.
patent: 6861334 (2005-03-01), Raaijmakers et al.
patent: 6867152 (2005-03-01), Hausmann et al.
patent: 6903005 (2005-06-01), Marsh
patent: 6908862 (2005-06-01), Li et al.
patent: 6984591 (2006-01-01), Buchanan et al.
patent: 2001/0049205 (2001-12-01), Sandhu et al.
patent: 2003/0015764 (2003-01-01), Raaijmakers et al.
patent: 2003/0092241 (2003-05-01), Doan et al.
patent: 2003/0129828 (2003-07-01), Cohen
patent: 2003/0157781 (2003-08-01), Macneil et al.
patent: 2004/0004247 (2004-01-01), Forbes et al.
patent: 2004/0025787 (2004-02-01), Selbrede et al.
patent: 2004/0043149 (2004-03-01), Gordon et al.
patent: 2004/0044127 (2004-03-01), Okubo et al.
patent: 2004/0079728 (2004-04-01), Mungekar et al.
patent: 2004/0102031 (2004-05-01), Kloster et al.
patent: 2004/0203254 (2004-10-01), Conley et al.
patent: 2004/0206267 (2004-10-01), Sambasivan et al.
patent: 2004/0247787 (2004-12-01), Mackie et al.
patent: 2005/0054213 (2005-03-01), Derderian et al.
patent: 2005/0112282 (2005-05-01), Gordon et al.
patent: 2005/0239264 (2005-10-01), Jin et al.
patent: 2006/0038293 (2006-02-01), Rueger et al.
patent: 5-308071 (1993-11-01), None
patent: 2004-256479 (2004-09-01), None
patent: WO02/27063 (2002-04-01), None
patent: WO03/083167 (2003-09-01), None
Ritala et al., “Atomic Layer Deposition”, Handbook of Thin Films Materials, vol. 1, 2002, pp. 103-159.
Dennis Michael Hausmann, “Atomic Layer Deposition of Metal Oxide Thin Films,” A thesis presented by, Harvard University, 186 pages, Jul. 2002.
Hausmann et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, vol. 308, Oct. 2002, 5 Pages.
Gordon et al., “A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches”, Chemical Vapor Deposition 2003, 9, No. 2, pp. 73-78.
Papasouliotis et al., Methods for Forming High Density, Conformal, Silica Nanolaminate Films Via Pulsed Deposition Layer In Structures of Confined Geometry, Novellus Systems, Inc., U.S. Appl. No. 11/026,284, filed Dec. 20, 2004, pp. 1-24.
Papasouliotis, George D., “Optimal Operation of Conformal Silica Deposition Reactors”, Novellus Systems, Inc., U.S. Appl. No. 11/077,108, filed Mar. 9, 2005, pp. 1-31.
U.S. Office Action mailed May 31, 2005, from U.S. Appl. No. 10/746,274.
Hausmann et al., “Plasma Treatments to Improve the Properties of Silica Thin Films Produced by a Rapid Vapor Deposition (RVD)”, Novellus Systems, Inc., filed Dec. 23, 2000, U.S. Appl. No. 10/746,274, pp. 1-29.
Greer et al., “Method and Apparatus to Reduce the Frequency of Chamber Cleans in Rapid Vapor Deposition (RVD) of Silicon Oxide”, Novellus Systems, Inc., filed Jul. 12, 2004, U.S. Appl. No. 10/890,376, pp. 1-25.
Hausmann et al., “Silica Thin Films Produced by Rapid Suface Catalyzed Vapor Deposition (RVD) Using a Nucleation Layer”, Novellus Systems, Inc., filed Jun. 22, 2004, U.S. Appl. No. 10/875,158, pp. 1-25.
U.S. Office Action mailed Sep. 22, 2005, from U.S. Appl. No. 10/874,814.
Rulkens et al., “Mixed Alkoxy Precursors and Methods of Their Use for Rapid Vapor Deposition of SiO2Films”, Novellus Systems, Inc., filed Jun. 22, 2004, U.S. Appl. No. 10/874,814, pp. 1-26.
U.S. Office Action mailed Jun. 23, 2005, from U.S. Appl. No. 10/874,808.
Hausmann et al., “Aluminum Phosphate Incorporation in Silica Thin Films Produced by Rapid Surface Catalyzed Vapor Deposition (RVD)”, Novellus Systems, Inc., filed Jun. 22, 2004, U.S. Appl. No. 10/874,808, pp. 1-21.
Papsouliotis et al., “Method for Controlling Properties of Conformal Silica Nanolaminates Formed by Rapid Vapor Deposition”, Novellus Systems, Inc., filed Jun. 22, 2004, U.S. Appl. No. 10/874,696, pp. 1-30.
Gaillard et al., “Silicon dioxide chemical vapor deposition using silane and hydrogen peroxide”, Rapid Communications, J. Vac. Sci. Technol. B 14(4), Jul./Aug. 1996, pp. 2767-2769.
Beekmann, et al., “Properties of posttreated low κ flowfill™ films and their stability after etch, resist and polymer strip processes”, Microelectronic Engineering 55(2001), pp. 73-79.
Robl et al., “Integration of Flowfill® and Forcefill® for cost effective via applications” Sep. 1999, pp. 77-83.
Penka et al., “Integration Aspects of Flowfill and Spin-on-Glass Process for Sub-0.35 μm Interconnects”, pp. 1-3.
Hockele et al., “Flowfill-Process as a New Concept for Inter-Metal-Dielectrics”, Siemens AG, Semiconductor Group, 1998, pp. 235-238.
Roland et al., “Theoretical Modeling of SiO2Photochemical Vapor Deposition and Comparison to Experimental Results for Three Oxidant Chemistries: SiH4= O2, H2O/O2, and H2O2”, Chem Mater 2001, 13, 2501-2510.
Roland et al., “Low Temperature Photochemical Vapor Deposition of SiO2 Using 172 nm Xe2* Excimer Lamp Radiation with Three Oxidant Chemistries: O2, H2O/O2, and H2O2”, Chem Mater 2001, 13, 2493-2500.
Moore et al., “Reaction of hydrogen peroxide with organosilanes under chemical vapour deposition conditions”, J. Chem. Soc., Dalton Trans., 2000, 2673-2677.
Gaillard et al., “Effect of plasma and thermal annealing on chemical vapor deposition dielectrics grown using SIH4-H2O2gas mixtures”, J. Vac. Sci. Technol. A15(5), Sep./Oct. 1997, pp. 2478-2484.
Taylor et al., “Studies on the reaction between silane and hydrogen peroxide vapour; surface formation of planarized silica layers”, J. Chem. Soc., Dalton Trans., 1997, pp. 1049-1053.
Xia et al., “High Aspect Ratio Trench Filling Using Two-Step Subatmospheric Chemical Vapor Deposited Borophosphosilicated Glass for <0.18 μm Device Application”, Journal of The Electrochemical Society, 146 (5) 1884-1888 (1999).
Xia et al., “High Temperature Subatmospheric Chemical Vapor Deposited Undoped Silicated Glass—A Solution for Next Generation Shallow Trench Isolation”, Journal of The Electrochemical Society, 146 (3) 1181-1185 (1999).
Arno et al., “Fourier Transform Infared Characterization of Downstream Gas-Phase Species Generated by Tetraethylorthosilicate/Ozone Atmospheric Pressure Reactions”, Journal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optimal operation of conformal silica deposition reactors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optimal operation of conformal silica deposition reactors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal operation of conformal silica deposition reactors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3648333

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.