Optical SNR measurer in WDM optical transmitting device

Optical: systems and elements – Deflection using a moving element – Using a periodically moving element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S199200

Reexamination Certificate

active

06268943

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a signal-to-noise ratio (SNR) measurer, and in particular, to an optical SNR measurer in a system using a wavelength division multiplexing (WDM) transmission scheme.
2. Description of the Related Art
Wavelength division multiplexing is one of optical signal transmitting techniques, in which a plurality of optical signals at different optical wavelengths are simultaneously propagated through a strand of optical fiber. Wavelength division demultiplexing in the wavelength division multiplexing transmission scheme refers to separation of an optical signal multiplexed on a strand of optical fiber into its constituent optical signals.
An optical SNR is a very significant factor in a wavelength division multiplexing optical transmitting device because it directly affects optical signal quality. U.S. Pat. No. 5,689,594 to Xiaoping Charles Mao entitled Multiple Wavelength Bidirectional Lightwave Amplifier discusses an eight wavelength multiple wavelength bidirectional lightwave amplifier which optimizes the signal-to-noise ratio of each wavelength by automatically compensating for any gain change in the wavelengths. U.S. Pat. No. 5,796,479 to Dennis Derickson et al. entitled Signal Monitoring Apparatus For Wavelength Division Multiplexed Optical Telecommunication Networks describes a detector array spectrometer which provides efficient use of detectors to simultaneously monitor wavelength, power, and signal-to-noise ratio of wavelength division multiplexing channels in optical telecommunication networks. The detector array spectrometer incorporates an angled diffraction grating to achieve compact size, while spatially separating component signals from each of the wavelength division multiplexing channels according to the channels' wavelengths. The component signals provided by the diffraction grating are incident on an array of split-detectors that conforms to the spatial separation of the component signals. While the split-detectors receive a signal from each wavelength division multiplexing channel, noise detectors positioned between adjacent split-detectors measure noise levels between wavelength division multiplexing channels. Each of two halves of each split-detector is equally illuminated by the component signal when the wavelength division multiplexing channel is operating at its designated channel wavelength. Output signals from the two halves are summed to monitor the power of the wavelength division multiplexing channel, while the difference between the output signals from the two halves indicates deviation from the designated wavelength division multiplexing channel wavelength. The ratio of the power in the wavelength division multiplexing channel to the noise level measured by the adjacently positioned noise detector monitors the SNR of the wavelength division multiplexing channel. U.S. Pat. No. 5,894,362 to Hiroshi Onaka et al. entitled Optical Communication System Which Determines The Spectrum Of A Wavelength Division Multiplexed Signal And Performs Various Processes In Accordance With The Determined Spectrum describes signal-to-noise ratio (SNR) detection in each channel of wavelength division multiplexed signal light. The SNR in each channel can be obtained by calculating the ratios between peak powers in each channel and noise components near the respective channels. Further, true signal power can be calculated by subtracting noise component power near each channel from the peak power of each signal in the corresponding channel. The operational conditions and optical output of the optical amplifier can be suitably set according to both the true signal power in each channel and the total optical power inclusive of noise power. More specifically, the power of pumping light is controlled according to the result of measurement of the total optical power inclusive of noise power, thereby making flat the gain characteristic of the optical amplifier (the characteristic representing the relation between gain and wavelength). Further, the optical output of the optical amplifier can be controlled so as to make constant the true signal power or the average of true signal powers in channels in the case that the number of the channels has been recognized. Control processing includes detecting a “first” signal-to-noise ratio of the wavelength division multiplexed signal light before the Wavelength division multiplexed light is amplified. The monitoring unit also detects a “second” signal-to-noise ratio of the wavelength division multiplexed signal light after the wavelength division multiplexed signal light is amplified. The monitoring unit then determines a noise figure from the ratio of the first signal-to-noise ratio to the second signal-to-noise ratio and, utilizing the noise figure, controls the optical amplifier so as to make constant the detected true signal power. Additionally, the control processing can also include controlling the optical amplifier in accordance with the determined noise figure to achieve a desired noise figure.
It is also known that in order to measure the optical SNR, the wavelength division multiplexing optical transmitting device typically uses a multichannel optical SNR measurer, due to the multiplexing of optical signals of plural signal channels at different wavelengths on a strand of optical fiber, and measures an optical SNR for each channel. For this operation, the optical SNR measurer is provided with a filter. This filter is virtually the same in function and configuration as a wavelength division demultiplexer for demultiplexing a wavelength division multiplexed optical signal into optical signals of signal channels in a wavelength division multiplexing optical transmitting device. The filter as well as the wavelength division demultiplexer is expensive.
As described above, the conventional wavelength division multiplexing optical transmitting device additionally uses a filter for separating an optical signal for each channel from a wavelength division multiplexed optical signal so that optical SNR can be measured, resulting in a cost increase.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an optical SNR measurer in a wavelength division multiplexing optical transmitting device, which obviates the need for a filter for separating an optical signal for each channel from a wavelength division multiplexed optical signal.
To achieve the above object, there is provided an optical SNR measurer in a wavelength division multiplexing optical transmitting device. In the optical SNR measurer, a wavelength division demultiplexer demultiplexes an optical signal wavelength-division-multiplexed from a plurality of signal channels into optical signals of the signal channels and an optical signal of a noise channel in the vicinity of the signal channels and at a different wavelength, an optical tap separates a predetermined percentage of an optical signal of a signal channel adjacent to the noise channel among the separated signal channels, a first optical detector detects the optical signal separated by the optical tap and converts the detected optical signal to an electrical signal, a second optical detector detects the optical signal of the noise channel and converting the detected optical signal to an electrical signal, and an operating unit obtains an optical SNR by calculating a ratio of the strength of the electrical signal received from the first optical detector to that of the electrical signal received from the second optical detector.


REFERENCES:
patent: 5010346 (1991-04-01), Hamilton
patent: 5654816 (1997-08-01), Fishman
patent: 5689594 (1997-11-01), Mao
patent: 5796479 (1998-08-01), Derickson et al.
patent: 5894362 (1999-04-01), Onaka et al.
patent: 5986782 (1999-11-01), Alexander et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical SNR measurer in WDM optical transmitting device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical SNR measurer in WDM optical transmitting device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical SNR measurer in WDM optical transmitting device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2489224

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.