Optical recording medium

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S945000, C430S270200, C430S270210, C369S283000, C369S288000

Reexamination Certificate

active

06194121

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an optical recording medium, and more particularly to an optical recording medium of the heat mode.
2. Description of Prior Art
The optical recording medium by nature requires no direct contact between the medium itself and the writing/reading head and, therefore, features perfect freedom of the recording medium from degradation by abrasion. This salient feature has encouraged a large amount of research and development activities on a wide variety of optical recording media.
Among other optical recording media, the optical recording media of the heat mode are attracting considerable attention from those engaged in research and development activities owing to advantages such as, for example, obviating the necessity for developing recorded images in a dark room.
The optical recording media of this heat mode are designed to operate by making use of the recording beam as the source of heat. For example, the recording beam such as the laser beam is utilized to melt, remove, or otherwise incise part of the medium so as to write data in the medium in the form of small holes called “pits”. By thus inserting pits in prescribed patterns in the medium, information is recorded as desired. The information thus recorded in the medium is read out by causing the reading beam to sense the patterns in which pits are arranged.
To cite examples of the optical recording media involving formation of such pits, the type which has a recording layer of a light-absorbing dye superposed on a substrate so that pits are formed by causing the dye to be melted by the recording light, the type which has a recording layer incorporating an autoxidizable compound such as nitrocellulose and a light-absorbing dye superposed on a substrate so that pits are formed by causing nitrocellulose and other materials to be decomposed by the recording light, and the type which has a recording layer of a thermoplastic resin and a light-absorbing dye deposited by spreading on a substrate so that pits are formed by melting the resin and dye are known.
Incidentally, it has been observed that with a dye such as, for example, the cyanine dye which is used with a light of long wavelength, particularly a laser diode beam, there occur detrimental phenomena such as the degradation of the dye due to the oxidation caused by the red to near infrared light present in ambient light and degradation of the S/N ratio 9 or C/N ratio of the read signal retrieved from the written information (degraded reading signal) owing to repeated exposure of the dye to the reading light.
One plausible explanation of these phenomena is based on a theory that when the dye is excited by the red to near infrared light of long wavelength, energy transfer and consequent formation of singlet oxygen ensue and this singlet oxygen degrades the dye by oxidation. The inventors have found that occurrence of these phenomena is abated by incorporating a quencher in addition to the dye in the recording layer. They have already disclosed this information to the art.
In this case, the quencher assumes an excited state by relieving the singlet oxygen or the dye of the burden of electron transfer or energy transfer and consequently enables itself to resume its normal state. When the dye excites itself by absorbing the reading beam and induces formation of singlet oxygen, the quencher converts the singlet oxygen into its triplet state or impedes the formation of singlet oxygen, with the result that the aforementioned degradation of reading signal is notably abated.
With the dye of the type described above, although the degradation due to the oxidation caused by red to near infrared color occurs preponderantly, degradation caused by the ultraviolet to visible light also occurs.
Even when the recording layer contains a quencher, the disadvantage that the sensitivity of the recording layer to the writing beam and the C/N or S/N ratio of the read signal are degraded after prolonged standing of the recording layer under the room light still persists.
One well-known optical recording medium of the type involving the formation of pits has a recording layer of tellurium or a tellurium-selenium-arsenic mixture, for example, deposited by the vapor-phase coating technique on a substrate so that formation of pits is accomplished by causing tellurium or a tellurium mixture to be melted.
In a recording medium of this operating principle, a groove for tracking is formed on the substrate, the recording layer is deposited in a substantially uniform thickness to cover the groove and the uncut surface of the substrate separated by the groove, the portion of the recording layer which overlies the uncut surface separated by the groove, for example, is used as a recording track for formation of pits thereon, and the writing of information is effected on the recording track from the surface side of the recording layer, for example.
In this case, the thickness of the recording layer is limited to within the range of about 0.01 to 2 &mgr;m so as to maximize the sensitivity of recording and the C/N ratio of the reading signal.
The groove is formed to detect the beam under polarizing the direction of reflected ray to one direction by interference effect of phase difference based on depth of the groove, when the beam spots for writing/reading starts to come off from the recording track, so it is usually about &lgr;8n (&lgr;is a wavelength of the beam light). n is the reflective index of a substrate.
To cite other optical recording media involving formation of pits, the type which has a recording layer of a light-absorbing dye applied by spreading on a substrate so that formation of pits is effected by causing the dye to be melted by the recording beam, the type which has a recording layer of an autoxidizable compound such as nitrocellulose and a light-absorbing dye deposited by spreading on a substrate so that the formation of pits is obtained by causing nitrocellulose and other component to be decomposed, and the type which has a recording layer of a thermoplastic resin and a light-absorbing dye deposited by spreading on a substrate so that the formation of pits is attained by causing the resin and the dye to be melted have become popular [Appl. Phys. Lett. 39, (9) 718-720(1981); Appl. Phys. A26, 101-105(1981); J. Vac. Sci. Technol. 18(1)92-99 & 105-109 (1981)]
These media which have such various recording layers deposited by spreading on their respective substrates are easy to manufacture because they do not require the vacuum deposition technique.
When a recording layer is superposed on a substrate which has a tracking groove as described above, however, since the recording layer, because of the behavior of any applied fluid coat, is necessarily produced in the form of flat surface film without reference to the presence of absence of the groove, the thickness and the reflectance of the recording layer are different on the depressed surface of the groove and on the surface above the groove. As a natural consequence, the deviation of the reflected beam owing to the interference caused by the phase difference is small. The optimum thickness of the recording layer which maximizes the writing sensitivity and the C/N ratio, the optimum dimensions of the groove which permits still better control of tracking, and the optimum magnitudes of other physical attributes remain yet to be found.
U.S. Pat. No. 4,465,767 to Oba and Ubehara describes an optical recording medium including a reflective layer containing metal particles. The products of this invention as will be clear hereinafter do not require a reflective layer.
U.S. Pat. No. 4,320,489 describes certain structures useful as optical storage media. These structures all contain an electroconductive layer. It is a feature of the optical recording media of this invention that they do not utilize electroconductive systems.
U.S. Pat. No. 4,412,231 which is assigned to the assignee of this invention and includes as coinventors some of the same coinventors of this invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical recording medium does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical recording medium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical recording medium will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.