Electrical generator or motor structure – Non-dynamoelectric – Charge accumulating
Reexamination Certificate
1999-03-30
2001-04-10
Dougherty, Thomas M. (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Charge accumulating
Reexamination Certificate
active
06215222
ABSTRACT:
TECHNICAL FIELD
The invention relates generally to optical switches and more particularly to an optical switch having micromachine-actuated mirrors.
DESCRIPTION OF THE RELATED ART
Continuing innovations in the field of fiber optic technology have contributed to the increasing number of applications of optical fibers in different technologies. With the increased utilization of optical fibers, there is a need for efficient peripheral devices that assist in the transmission of data through these optical fibers, such as optical switches. An optical switch operates to selectively couple an optical fiber to one of two or more alternative optical fibers such that the two coupled optical fibers are in communication with each other.
The coupling of the optical fibers performed by an optical switch can be effectuated through various methods. One method of interest includes using a mirror that is placed in front of an input optical fiber to reflect optical signals from the input optical fiber to at least one of two output optical fibers. The input and output optical fibers may be either uni-directional or bi-directional fibers. In the simplest implementation of the mirror method, the input optical fiber is aligned with one of two output optical fibers, such that when the mirror is not placed in an optical path between these two aligned optical fibers, the two aligned optical fibers are in a communicating state. However, when the mirror is placed between the two aligned optical fibers, the mirror steers, i.e., reflects, optical signals from the input optical fiber to the other output optical fiber. The positioning of the mirror in and out of the optical path between the two aligned optical fibers can be accomplished by using an apparatus that mechanically moves the mirror to a desired position.
U.S. Pat. No. 5,208,880 to Riza et al. describes an optical switch that utilizes a piezoelectric actuator to displace a mirror to selectively couple an input optical fiber to a particular output optical signal. The piezoelectric actuator of Riza et al. includes a number of piezoelectric bars, also known as unimorphs, to linearly displace the mirror. In a first embodiment, the optical switch of Riza et al. includes N output optical fibers that are positioned perpendicularly to an input optical fiber in a side-by-side configuration. The mirror is positioned on the axis of the input optical fiber and has a reflective surface that is orientated to direct optical signals from the input optical fiber at a right angle. The mirror is coupled to the piezoelectric actuator that is able to displace the mirror along the axis of the input optical fiber to couple the input optical fiber to any one of the output optical fibers. In operation, the piezoelectric actuator linearly displaces the mirror to a location where the axis of the input optical fiber intersects an axis of a preselected output optical fiber. The mirror at the intersecting location reflects optical signals from the input optical to the preselected output optical fiber and reflects optical signals from the preselected output optical fiber to the input optical fiber. The input optical fiber can be optically coupled to another output optical fiber by linearly displacing the mirror to a new location, where the axis of the input optical fiber intersects an axis of the to-be-coupled output optical fiber.
In a second embodiment, the optical switch of Riza et al. is configured to accommodate two input optical fibers and two output optical fibers. The optical fibers are positioned in an “X” configuration such that two output optical fibers are located in the upper portion of the configuration and the two input optical fibers are located in the lower portion of the configuration. In this embodiment, the optical switch of Riza et al. includes a thin mirror that has reflective surfaces on both sides. The mirror can be positioned in the optical paths between the optical fibers by the piezoelectric actuator such that when the mirror is displaced to the center of the “X” configuration, the lower left optical fiber is coupled to the upper left optical fiber and the lower right optical fiber is coupled to the upper right optical fiber (the “reflective state”). However, when the mirror is removed from the optical paths, the lower left optical fiber is coupled to the upper right optical fiber and the lower right optical fiber is coupled to the upper left optical fiber (the “passive state”).
U.S. Pat. No. 5,042,889 to Benzoni describes an optical switch that also uses a mirror to switch optical paths between optical fibers. In an exemplary embodiment, the optical switch of Benzoni is configured to accommodate four optical fibers that are positioned in the above-described “X” configuration. In contrast to the optical switch of Riza et al., the optical switch of Benzoni utilizes an electromagnetic mechanism, instead of a piezoelectric actuator, to move the mirror in and out of the optical paths between the optical fibers. The electromagnetic mechanism operates to create an attractive magnetic force between the mechanism and the mirror. The upper section of the mirror includes a ferromagnetic material that becomes attracted to the electromagnetic mechanism when the magnetic force is generated. The electromagnetic mechanism is located above the mirror to lift the mirror when the mechanism is activated. Initially, the mirror is positioned between the optical paths such that the four optical fibers are coupled in the reflective state. When the electromagnetic mechanism is activated, the attractive magnetic force causes the mirror to be lifted out of the optical paths to set the optical fibers in the passive state.
Although the known optical switches operate well for their intended purpose, what is needed is an optical switch that includes a compact actuator to precisely position an associated mirror using low operating voltage, so that the actuator is compatible with complementary metal-oxide semiconductor (CMOS) circuitry.
SUMMARY OF THE INVENTION
A system and a method of steering optical beams utilize a surface electrostatic actuator to mechanically pivot a micromirror to selectively redirect a received optical beam to a predetermined direction. In a preferred application, the system is an optical switch that can optically couple a number of first optical fibers to a number of second optical fibers in one of many configurations. The electrostatic actuator and the micromirror form a switching device of the optical switch to redirect optical signals between two optical fibers such that the two optical fibers are in communication.
In an exemplary embodiment, the optical switch includes sixteen switching devices in a 4×4 arrangement. The optical switch is connected to a first set of four optical fibers that are positioned on the first side of the optical switch. The optical switch is also connected to a second set of four optical fibers that are positioned on a second side of the optical switch, which is perpendicular to the first side of the optical switch. The optical fibers of the first and second set are situated above the upper surface of the optical switch and have axes that are generally parallel to the upper surface of the optical switch. Each switching device of the optical switch is positioned between the first set of optical fibers and the second set of optical fibers such that when activated, a predefined optical fiber of the first set is optically coupled to a corresponding optical fiber of the second set. In this embodiment, each optical fiber of the first set can be optically coupled to a distinct optical fiber of the second set by selectively activating four switching devices. The coupling configuration of the optical fibers can be changed by deactivating one or more of the activated switching devices and activating a corresponding number of the non-activated switching devices in a predetermined manner, so that four switching devices are again activated.
The optical coupling of the optical fibers is accomplished by pivoting the micromirror from a non-
Agilent Technologie,s Inc.
Dougherty Thomas M.
LandOfFree
Optical cross-connect switch using electrostatic surface... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical cross-connect switch using electrostatic surface..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical cross-connect switch using electrostatic surface... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451183