Optical control of deposition of crystal monolayers

Adhesive bonding and miscellaneous chemical manufacture – Delaminating processes adapted for specified product – Delaminating in preparation for post processing recycling step

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

156610, 156613, 422108, 422245, 4272551, 118665, 118688, 118691, C30B 2516, C30B 2302, C30B 3500, B05C 1100

Patent

active

049311328

ABSTRACT:
A method and apparatus for epitaxial growth of precisely one monolayer. The growth is by organometallic chemical vapor deposition in which the substrate is alternately exposed to the anion and cation of a III-V compound. During deposition of the cation, for instance Ga or Al, reflectance difference spectroscopy is performed to obtain the difference of reflected light beams polarized in orthogonal directions. A growth of a monolayer and even of a partial monolayer can be monitored in real time.

REFERENCES:
patent: 4058430 (1977-11-01), Suntola et al.
patent: 4141780 (1979-02-01), Kleinknecht et al.
patent: 4405989 (1983-09-01), Tsukada et al.
patent: 4413022 (1983-11-01), Suntola et al.
patent: 4511800 (1985-04-01), Harbeke et al.
patent: 4564997 (1986-01-01), Matsuo et al.
patent: 4575462 (1986-03-01), Dobson et al.
patent: 4766317 (1988-08-01), Harbeke et al.
patent: 4806321 (1989-02-01), Nishizawa et al.
"GaAs/AsGaAs Quantum Well Lasers with Active Regions Grown by Atomic Layer Epitaxy", Applied Physics Letters, S. P. Den Baars et al., 1987, vol. 51, No. 9, pp. 1530-1532.
"Perpendicular-Incidence Null Ellipsometry of Surfaces with Arbitrary Anisotropy", Optical Engineering, R. M. A. Azzam, 1981, vol. 20, pp. 58-61.
"Perpendicular-Incidence Ellipsometry (PIPE) of Surfaces with Arbitrary Anisotropy", Journal Optics (Paris), R. M. A. Azzam, 1981, vol. 12, pp. 317-321.
"Anisotropies in the Above-Band-Gap Optical Spectra of Cubic Semiconductors", Physical Review Letters, D. E. Aspnes et al., 1985, vol. 54, pp. 1956-1959.
"Above-Bandgap Optical Anisotropies in Cubic Semiconductors: A Visible-Near Ultraviolet Probe of Surfaces", Journal of Vacuum Science and Technology, D. E. Aspnes, 1985, vol. B3, pp. 1498-1506.
"Optical Reflectance and RHEED Transients During MBE Growth on (001) GaAS", Materials Research Society Symposium Proceedings, D. E. Aspnes et al., 10/9/87, vol. 91, pp. 57-62.
"Optical-Reflectance and Electron-Diffraction Studies of Molecular-Beam-Epitaxy Growth Transients on GaAs (001)", Physical Review Letters, D. E. Aspnes et al., 1987, vol. 59, pp. 1687-1690.
"Reflectance-Difference Spectroscopy System for Real-Time Measurements of Crystal Growth", Applied Physics Letters, D. E. Aspnes et al., 1988, vol. 52, pp. 957-959.
"Optical Studies of Molecular-Beam Epitaxy Growth of GaAs and AlAs", Journal of Vacuum Science and Technology, D. E. Aspnes et al., 1988, vol. B6, pp. 1127-1131.
"Oscillations in the Optical Response of (001) GaAs and AlGaAs Surfaces During Crystal Growth by Molecular Beam Epitaxy", Applied Physics Letters, J. P. Harbison et al., 1988, vol. 52, pp. 2046-2048.
"Optical Reflectance Measurements of Transients During Molecular Beam Epitaxial Growth on (001) GaAs", Journal of Vacuum Science and Technology, J. P. Harbison et al., 1988, vol. B6, pp. 740-742.
"Application of Reflectance Difference Spectroscopy to Molecular-Beam Epitaxy Growth of GaAs and AlAs", Journal of Vacuum Science and Technology, D. E. Aspnes et al., 1988, vol. A6, pp. 1327-1332.
"Molecular-Beam Epitaxy Growth of Tilted GaAs/AlAs Superlattices by Deposition of Fractional Monolayer on Vicinal (001) Substrates", Journal of Vacuum Science and Technology, J. M. Gaines et al., 1988, vol. B6, pp. 1378-1331.
"GaAs/AsGaAs Quantum Well Lasers with Active Regions Grown by Atomic Layer Epitaxy'", Applied Physics Letters, S. P. Den Baars et al., 1987, vol. 51, No. 9, pp. 1530-1532.
"Perpendicular-Incidence Null Ellipsometry of Surfaces with Arbitrary Anisotropy", Optical Engineering, R. M. A. Azzam, 1981, vol. 20, pp. 58-61.
"Perpendicular-Incidence Ellipsometry (PIPE) of Surfaces with Arbitrary Anisotropy", Journal Optics (Paris), R. M. A. Azzam, 1981, vol. 12, pp. 317-321.
"Anisotropies in the Above-Band-Gap Optical Spectra of Cubic Semiconductors", Physical Review Letters, D. E. Aspnes et al., 1985, vol. 54, pp. 1956-1959.
"Above-Bandgap Optical Anisotropies in Cubic Semiconductors: A Visible-Near Ultraviolet Probe of Surfaces", Journal of Vacuum Science and Technology, D. E. Aspnes, 1985, vol. B3, pp. 1498-1506.
"Optical Reflectance and RHEED Transients During MBE Growth on (001) GaAs", Materials Research Society Symposium Proceedings, D. E. Aspnes et al., 10/9/87, vol. 91, pp. 57-62.
"Optical-Reflectance and Electron-Diffraction Studies of Molecular-Beam-Epitaxy Growth Transients on GaAs (001)", Physical Review Letters, D. E. Aspnes et al., 1987, vol. 59, pp. 1687-1690.
"Reflectance-Difference Spectroscopy System for Real-Time Measurements of Crystal Growth", Applied Physics Letters, D E. Aspnes et al., 1988, vol. 52, pp. 957-959.
"Optical Studies of Molecular-Beam Epitaxy Growth of GaAs and AlAs", Journal of Vacuum Science and Technology, D. E. Aspnes et al., 1988, vol. B6, pp. 1127-1131.
"Oscillations in the Optical Response of (001) GaAs and AlGaAs Surfaces During Crystal Growth by Molecular Beam Epitaxy", Applied Physics Letters, J. P. Harbison et al., 1988, vol. 52, pp. 2046-2048.
"Optical Reflectance Measurements of Transients During Molecular Beam Epitaxial Growth on (001) GaAs", Journal of Vacuum Science and Technology, J. P. Harbison et al., 1988, Vol. B6, pp. 740-742.
"Application of Reflectance Difference Spectroscopy to Molecular-Beam Epitaxy Growth of GaAs and AlAs", Journal of Vacuum Science and Technology, D. E. Aspnes et al., 1988, vol. A6, pp. 1327-1332.
"Molecular-Beam Epitaxy Growth of Tilted GaAs/AlAs Superlattices by Deposition of Fractional Monolayer on Vicinal (001) Substrates", Journal of Vacuum Science and Technology, J. M. Gaines et al., 1988, vol. B6, pp. 1378-1331.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical control of deposition of crystal monolayers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical control of deposition of crystal monolayers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical control of deposition of crystal monolayers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-489791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.