Electrical computers and digital data processing systems: input/ – Input/output data processing – Data transfer specifying
Reexamination Certificate
1999-05-18
2002-04-02
Lee, Thomas (Department: 2182)
Electrical computers and digital data processing systems: input/
Input/output data processing
Data transfer specifying
C710S020000, C709S227000
Reexamination Certificate
active
06366967
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to data transaction systems, and more particularly, to data transaction systems using non-standard input/output devices.
BACKGROUND OF THE INVENTION
Data transaction systems which communicate with a plurality of remote terminals to transfer information used to complete a transaction or compile a database are well known. Typically, such systems include a central transaction processing system which may maintain a database of information such as customer or consumer data. Exemplary information in such a database may include customer identification, customer account numbers, credit limits and/or account balances from which a customer may draw. The central transaction processing system is typically coupled to a plurality of remote transaction or data input terminals. Transaction computers may include special purpose devices such as automatic teller machines (ATMs), point of sale (POS) terminals, credit card terminals, and screen phone terminals. Screen phone terminals are devices which integrate a telephone with an ATM-like device and possibly a magnetic card swipe reader. Data input terminals may include personal computers (PCs) interfaced to data collection devices or special purpose data collection terminals or monitors.
In these known data transaction systems, a user usually initiates a transaction by requesting access to funds in an account or from a credit line maintained by the central processing system. The request is transmitted to the central processing system which performs a verification to determine whether the user is a valid user of the system, has an account within the system, and that the amount of the transaction is within the limits of the consumer's credit line or that the user has the requested funds available in an existing account monitored by the central processing system. The central processing system then transmits authorization for or denial of the transaction to the remote terminal. In response to the message from the central processing system, the remote terminal dispenses cash (for an ATM) or the merchant provides the goods being purchased to the user if the authorization message indicates that the consumer's funds will be transferred to the merchant's account. Similar communication exchanges occur in data systems where electronic documents and other information are provided to a central site for compilation or processing. Consequently, this background discussion applies to all such transaction and data systems. Though the remainder of the discussion is directed to transaction systems, the reader should appreciate that the comments also apply to data systems as well.
The remote terminals may be coupled to the central processing system in several ways. For example, in some ATM systems, the ATMs are coupled to the central processing system through dedicated telephone or other data communication lines. These systems are preferred because they provide a relatively high degree of security since the dedicated data line coupling the central processing system to the ATM is not generally accessible by members of the public. The physical security of the dedicated data line is, however, expensive because no other traffic may utilize the line. Thus, the cost of leasing the dedicated line to an ATM with relatively low volumes of transactions may yield a high communication cost per transaction.
In an effort to reduce the communication cost per transaction, some transaction or data systems utilize telephone lines through a publicly-switched telephone network (PSTN) which may be accessed by other members of the public. Specifically, devices such as credit card terminals and screen phone terminals typically include a modem which converts the digital messages of the remote terminal into frequency modulated analog signals which may be transmitted over telephone lines to a modem at the central processing system. In other systems, the terminal may communicate digital data directly over ISDN lines of the PSTN to the central processing system. This line of communication between a remote terminal and the central processing system is performed by having the remote terminal dial a telephone number associated with the central processing system to establish communication with the central processing system. This type of communication path is relatively secure because the switching networks for the communication traffic through the PSTN are not readily accessible by the public and during the course of the financial transaction, only the central processing system and remote terminal are on the line.
Regardless of the communication method used to couple the central processing system to the remote terminals, the protocol and data formats used between the devices is typically proprietary. That is, the operator of each financial transaction system designs its own protocol and data message format for communication with the processor at the central site or generates a variant within a standard such as those established by the ANSI committee or the like for such communication. As a result, the remote terminals must include software that supports each operator's protocol and message formats in order to be compatible with an operator's central site. For example, application software in a credit terminal such as the TRANZ330, TRANZ380, or OMNI390 manufactured by VeriFone implement one or more of the communication protocols and formats for National Data Corporation (NDC), VISANET, MASTERCARD, BUYPASS, and National Bancard Corporation (NaBANCO) system processors in order to support transactions with the most popular transaction centers. Thus, the communication software absorbs a significant amount of terminal resources which could be used to support other terminal operations.
A related problem arises from the expanding home banking market. A customer of home banking system typically uses a screen phone terminal or a personal computer (PC) having a modem to establish communication through a PSTN to a central transaction processing system. Again, the operator of the central processing system must provide information regarding the data message formats for communicating with the central processing system to a vendor of software for the home banking terminals or must provide that software to its customers. As a result, home banking customers must purchase software to communicate with each banking system of which the customer wants to be a member. This cost and the need to install additional communication programs may make some consumers reluctant to be a member of more than one banking system or to change banking systems.
A communication system becoming increasingly popular and which provides standardized communication is the Internet. The Internet is an open network of networks which communicate through a variety of physical communication devices such as telephone lines, direct communication lines, and the like. Each network is coupled to the main Internet network for communication through a host computer supporting a TCP/IP router or bridger. The host computer typically includes a program, frequently called a Web server, which acts as a gateway to resources at the host computer which may be resident on the host computer or a network coupled to the host computer. Each server has an address identifying the location of the resources available through the Web server. The router recognizes communication for the server and directs the message to the server or it recognizes that the communication should be forwarded to another server. As a result, communication within the Internet may be point-to-point, but more likely, the communication path is a somewhat circuitous one with the information passing through the routers of multiple servers before reaching its final destination.
A number of message protocols and formats have been developed for the Internet. The physical communication protocol and data message format is the Transport Control Protocol/Internet Protocol (TCP/IP). The TCP/IP protocol involves multiple layers of encapsulati
Datascape Inc.
Lee Thomas
Maginot Addison & Moore
Perveen Rehana
LandOfFree
OPEN NETWORK SYSTEM FOR I/O OPERATION INCLUDING A COMMON... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with OPEN NETWORK SYSTEM FOR I/O OPERATION INCLUDING A COMMON..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and OPEN NETWORK SYSTEM FOR I/O OPERATION INCLUDING A COMMON... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2900114