On-press developable thermosensitive lithographic printing...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S271100, C430S944000, C430S180000, C430S288100

Reexamination Certificate

active

06548222

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to lithographic printing plates. More particularly, it relates to on-press ink and/or fountain solution developable lithographic plates having on a substrate a thermosensitive layer capable of hardening upon exposure to an infrared laser radiation.
BACKGROUND OF THE INVENTION
Lithographic printing plates (after process) generally consist of ink-receptive areas (image areas) and ink-repelling areas (non-image areas). During printing operation, an ink is preferentially received in the image areas, not in the non-image areas, and then transferred to the surface of a material upon which the image is to be produced. Commonly the ink is transferred to an intermediate material called printing blanket, which in turn transfers the ink to the surface of the material upon which the image is to be produced.
Lithographic printing can be further divided into two general types: wet lithographic printing (conventional lithographic printing) and waterless lithographic printing. In wet lithographic printing plates, the ink-receptive areas consist of oleophilic materials and the ink-repelling areas consist of hydrophilic materials; fountain solution (consisting of primarily water) is required to continuously dampen the hydrophilic materials during printing operation to make the non-image areas oleophobic (ink-repelling). In waterless lithographic printing plates, the ink-receptive areas consist of oleophilic materials and the ink-repelling areas consist of oleophobic materials; no dampening with fountain solution is required.
At the present time, lithographic printing plates (processed) are generally prepared from lithographic printing plate precursors (also commonly called lithographic printing plates) comprising a substrate and a photosensitive coating deposited on the substrate, the substrate and the photosensitive coating having opposite surface properties (such as hydrophilic vs. oleophilic, and oleophobic vs. oleophilic). The photosensitive coating is usually a photosensitive material, which solubilizes or hardens upon exposure to an actinic radiation, optionally with further post-exposure overall treatment. Here, hardening means becoming insoluble in a certain developer. In positive-working systems, the exposed areas become more soluble and can be developed to reveal the underneath substrate. In negative-working systems, the exposed areas become hardened and the non-exposed areas can be developed to reveal the underneath substrate. The exposed plate is usually developed with a liquid developer to bare the substrate in the non-hardened areas.
On-press developable lithographic printing plates have been disclosed in the literature. Such plates can be directly mounted on press after exposure to develop with ink and/or fountain solution during the initial press operation and then to print out regular printed sheets. No separate development process before mounting on press is needed. Among the patents describing on-press developable lithographic printing plates are U.S. Pat. Nos. 5,258,263, 5,516,620, 5,561,029, 5,616,449, 5,677,110, 5,811,220, 6,014,929, 6,071,675, and 6,242,156.
Conventionally, the plate is exposed with an actinic light (usually an ultraviolet light from a lamp) through a separate photomask film having predetermined image pattern that is placed between the light source and the plate. While capable of providing plate with superior lithographic quality, such a method is cumbersome and labor intensive.
Laser sources have been increasingly used to imagewise expose a printing plate that is sensitized to a corresponding laser wavelength. This allows the elimination of the photomask film, reducing material, equipment and labor cost.
Among the laser imagable plates, infrared laser sensitive plates are the most attractive because they can be handled and processed under white light. Infrared laser sensitive plates are also called thermosensitive plates or thermal plates because the infrared laser is usually converted to heat to cause a certain chemical or physical change (such as hardening, solubilization, ablation, phase change, or thermal flow) needed for plate making (although in some systems certain electron or energy transfers from the infrared dye to the initiator may also take place).
Various thermosensitive plates have been disclosed in the patent literature. Examples of thermosensitive plates are described in U.S. Pat. Nos. 4,054,094 and 5,379,698 (laser ablation plates), 5,705,309, 5,674,658, 5,677,106, 6,153,356, 6,232,038, and 4,997,745 (negative thermosensitive plates), 5,491,046 and 6,117,610 (both positive and negative thermosensitive plates, depending on the process), and 5,919,600 and 5,955,238 (thermosensitive positive waterless plate).
Despite the progress in conventional on-press developable plates and digital laser imagable plates, there is a desire for a lithographic plate which can be imaged by infrared laser, does not produce ablation debris, and does not require a separate liquid development process. More specifically, there is a desire for a thermosensitive lithographic plate that is on-press developable with ink and/or fountain solution.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a thermosensitive lithographic plate which is imagable with an infrared radiation (including infrared laser) and on-press developable with ink and/or fountain solution.
It is another object of this invention to provide an on-press developable thermosensitive lithographic plate having on a substrate a thermosensitive layer comprising a polymerizable monomer, an initiator, and an infrared absorbing dye or pigment.
It is yet another object of this invention to provide a method of on-press development or on-press imaging and development of the above lithographic plate.
Further objects, features and advantages of the present invention will become apparent from the detailed description of the preferred embodiments.
According to the present invention, there has been provided a negative lithographic printing plate capable of on-press development with ink and/or fountain solution, comprising on a substrate a thermosensitive layer, said thermosensitive layer being capable of hardening upon exposure to an infrared radiation and on-press developable with ink and/or fountain solution; wherein at least the hardened areas of said thermosensitive layer exhibit an affinity or aversion substantially opposite to the affinity or aversion of said substrate to at least one printing liquid selected from the group consisting of ink and an abhesive fluid for ink. The on-press developable lithographic plate is improved by coating the thermosensitive layer conformally on a roughened substrate so that the surface of the thermosensitive layer has peaks and valleys substantially corresponding to the major peaks and valleys of the substrate microscopic surface.
This invention also describes on-press development, and on-press imaging and development of the above lithographic plates.
The plate can be imagewise exposed with an infrared radiation on a plate exposure device and then transferred to a lithographic press for on-press development with ink and/or fountain solution by rotating the plate cylinder and engaging ink and/or fountain solution roller. The developed plate can then directly print images to the receiving sheets. Alternatively, the plate can be imagewise exposed with an infrared radiation while mounted on a plate cylinder of a lithographic press, on-press developed on the same press cylinder with ink and/or fountain solution, and then directly print images to the receiving sheets. Infrared laser is a preferred infrared radiation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The substrate employed in the lithographic plates of this invention can be any lithographic support. Such a substrate may be a metal sheet, a polymer film, or a coated paper. Aluminum (including aluminum alloys) sheet is a preferred metal support. Particularly preferred is an aluminum support that has been grained, anodized, and deposited with a barrier l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

On-press developable thermosensitive lithographic printing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with On-press developable thermosensitive lithographic printing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On-press developable thermosensitive lithographic printing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3027164

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.